
11/17/21

1

Objectives
•Picasso Design
•Reflection
•GUIs in Java
ØAnonymous inner classes

Nov 17, 2021 Sprenkle - CSCI209 1

1

Typical Trajectory of Projects

Nov 17, 2021 Sprenkle - CSCI209 2

This code is too complex!
I can’t understand this/do this project!

Time committed to project

U
nd

er
st

an
di

ng
/c

on
fid

en
ce

2

11/17/21

2

Typical Trajectory of Projects

Nov 17, 2021 Sprenkle - CSCI209 3

This code is too complex!
I can’t understand this/do this project!

I am starting to get it.
I have the mental model for the code base

Time committed to project

U
nd

er
st

an
di

ng
/c

on
fid

en
ce

3

Typical Trajectory of Projects

Nov 17, 2021 Sprenkle - CSCI209 4

This code is too complex!
I can’t understand this/do this project!

I am starting to get it.
I have the mental model for the code base

I am confident enough to write a little code

Time committed to project

U
nd

er
st

an
di

ng
/c

on
fid

en
ce

4

11/17/21

3

Typical Trajectory of Projects

Nov 17, 2021 Sprenkle - CSCI209 5

This code is too complex!
I can’t understand this/do this project!

I am starting to get it.
I have the mental model for the code base

I am confident enough to write a little code

I get it! I am writing code
and redesigning as necessary

Time committed to project

U
nd

er
st

an
di

ng
/c

on
fid

en
ce

5

Our Responsibilities

Nov 17, 2021 Sprenkle - CSCI209 6

This code is too complex!
I can’t understand this/do this project!

I am starting to get it.
I have the mental model for the code base

I am confident enough to write a little code

I get it! I am writing code
and redesigning as necessary

Time committed to project

U
nd

er
st

an
di

ng
/c

on
fid

en
ce

You: Adopt a growth mindset.
Try, Learn, Ask questions

Me: Support, Cheerlead, Answer questions

6

11/17/21

4

Review
• What is the goal of the Picasso project?
• When you click the Evaluate button in the given version of Picasso, it

generates the image for floor(y)
Ø Explain why the image looks like the image:
Ø Include the constraints/rules of Picasso

• How does an interpreter interpret a programming language?
Ø How do those steps map to the Picasso code base?

• What should we think about during design and analysis of a project?
Ø What are best practices?

• How should we learn a code base?

Nov 17, 2021 Sprenkle - CSCI209 7

7

Review: Picasso Project Overview
• Goal: Generate images from expressions
• Every pixel at position (x,y) gets assigned a color,

computed from its x and y coordinate and
the given expression
ØRange for x and y is [-1, 1]

• Colors are represented as RGB
[red, green, blue] values
ØComponent’s range [-1, 1]
ØBlack is [-1,-1,-1]
ØRed is [1,-1,-1]
ØYellow is [1, 1,-1]

Nov 17, 2021 Sprenkle - CSCI209 8

-1, -1 x

y

1, 1

1, -1

-1, 1

Points are (x,y)

8

11/17/21

5

Review: Generating Images from Expressions
•Expressions at a specific (x,y) point/pixel evaluate

to RGB colors [r,g,b]
Ø pixels[x][y] = expression.evaluate(x, y)

•x evaluates to RGB color [x, x, x]
•In top right corner,
• x evaluates to [1, 1, 1]
• y evaluates to [-1, -1, -1]

Nov 17, 2021 Sprenkle - CSCI209 9

-1, -1 x

y

1, 1

1, -1

-1, 1

9

Review: Generated Expressions

Nov 17, 2021 Sprenkle - CSCI209 10

For all x:
For all y:

pixels[x][y] = expression.evaluate(x, y)

[-1, 1, -1] x x*y

10

11/17/21

6

Review: Programming Language Design
•Must be unambiguous
ØProgramming Language defines a syntax and
semantics

•Interpreting programming languages
1. Parse program into tokens
2. Verify that tokens are in a valid form
3. Generate executable code
4. Execute code

Nov 17, 2021 Sprenkle - CSCI209 11

11

Review: Interpreting the Picasso Language

Nov 17, 2021 Sprenkle - CSCI209 12

Lexical
Analyzer

Semantic
Analyzer

Error

Error

Expression
Tree

Interpreter

Picasso
Expression

TokenTokenTokens

OR

OR

Evaluation of
expression

Draw on
canvas

12

11/17/21

7

Understanding the Code
•How does the given code map to lexical analysis,

semantic analysis, and evaluation components?
ØLook for packages, classes that map to these steps

•Suggestions:
ØLook for important words/terms from problem

domain
ØLook for terms from design patterns
ØPut code in black boxes or group code together

Nov 15, 2021 Sprenkle - CSCI209 13

13

Process of Understanding Code:
Building Your Mental Model
•Look for important words/terms from problem

domain
•Look for terms from design patterns
•Put code in black boxes or group code together
•Example:

Nov 17, 2021 Sprenkle - CSCI209 14

Lexical
Analyzer

Picasso
Expression TokenTokenTokens

tokens.*
Tokenizer,
Java’s StreamTokenizer

14

11/17/21

8

Interpreting the Picasso Language

Nov 17, 2021 Sprenkle - CSCI209 15

Lexical
Analyzer

Semantic
Analyzer

Error

Error

Expression
Tree

Interpreter

Picasso
Expression

TokenTokenTokens

OR

OR

Evaluation of
expression

Draw on
canvas

tokens.*

parser.*
expressions.*

Tokenizer,
Java’s StreamTokenizer

15

Process of Understanding Code:
Building Your Mental Model
•Apply spiral model to understanding code
•Review problem specification (low-cost effort)
•Explore code at the top-level (low-cost effort)
ØLook at packages, class names
ØDon’t take a deep-dive until you have the bigger

picture

Nov 17, 2021 Sprenkle - CSCI209 16

16

11/17/21

9

Process of Understanding Code:
Building Your Mental Model
• After you have the big picture, look at most important classes
• Decide: Does this class merit a closer look? Or do I just need

the big picture of what it does?
ØLean towards the latter towards the beginning

• Iterate!
ØGrow your mental model
ØWhat a “closer look” means changes over time

• Early: what methods does the class have? What classes does this object
interact with?

• Later: what do these methods do? How does this class interact with other
objects?

Nov 17, 2021 Sprenkle - CSCI209 17

17

Interpreting the Picasso Language

Nov 17, 2021 Sprenkle - CSCI209 18

Lexical
Analyzer

Semantic
Analyzer

Expression
Tree

Interpreter

Picasso
Expression

TokenTokenTokens

Mult

X Y

Evaluation of
expression

Draw on
canvas

x*y
<id:x>
<mult>
<id:y>

18

11/17/21

10

Interpreting the Picasso Language

Nov 17, 2021 Sprenkle - CSCI209 19

Lexical
Analyzer

Semantic
Analyzer

Expression
Tree

Interpreter

Picasso
Expression

TokenTokenTokens

Floor

Y

Evaluation of
expression

Draw on
canvas

floor(y) <floor>
<lparen>
<id:y>
<rparen>

19

Understanding the Code: Lexical Analysis
•Process
Øpicasso.parser.Tokenizer
Øpicasso.parser.tokens.TokenFactory

•Output:
Øpicasso.parser.tokens.*

Nov 17, 2021 Sprenkle - CSCI209 20FloorToken

20

11/17/21

11

Understanding the Code: Semantic Analysis
•Process
Øpicasso.parser.ExpressionTreeGenerator
Øpicasso.parser.SemanticAnalyzer
Øpicasso.parser.*Analyzer

•Output
Øpicasso.parser.language.expressions.*

Nov 17, 2021 Sprenkle - CSCI209 21FloorAnalyzer

21

Understanding the Code: Evaluation
•Process
Øpicasso.parser.language.
ExpressionTreeNode

•Output:
Øpicasso.parser.language.expressions.
RGBColor

•Displayed in PixMap on Canvas
Nov 17, 2021 Sprenkle - CSCI209 22Floor

22

11/17/21

12

Understanding the Code: Evaluation
•Key Parent class:
picasso.parser.language.ExpressionTreeNode

•“Old” version of expressions:
ØReferenceForExpressionEvaluations

Nov 17, 2021 Sprenkle - CSCI209 23

public abstract RGBColor evaluate(double x, double y);

23

Using Reflection in Java
•Reflection allows us to create objects of a class

using the name of the class
•Example adapted from MutantMaker:

Nov 17, 2021 Sprenkle - CSCI209 24

public static void initMutantMaker() {
mutants = new Mutant[numMutants];
mutants[0] = new Wolverine();
for (int i = 1; i < numMutants; i++) {

Class<?> mutantClass;
try {

mutantClass = Class.forName("mutants.Mutant"+ i);
mutants[i] = (Mutant)

mutantClass.getDeclaredConstructor().newInstance();
} catch (Exception e) {

e.printStackTrace();
}

}
}

24

11/17/21

13

Using Reflection in Java
• Can create objects of a class through the name of the class
• Used in SemanticAnalyzer

ØGets list of functions
• Read from conf/functions.conf

ØMaps a token to the class responsible for parsing that type of
token

ØWhen SemanticAnalyzer sees that token, calls the respective
analyzer to parse

ØExample: FloorToken maps to the FloorAnalyzer
• FloorAnalyzer pops the Floor token off the stack and then parses the

(one) parameter for the floor function

Nov 17, 2021 Sprenkle - CSCI209 25

25

Understanding Code: A Top-Down Approach
•Run program
•Start at Main.java
ØFollow calls to see how GUI is created
•Breadth- or depth-first search

ØWhat classes make up the GUI?

•GUIs often follow the MVC design pattern
ØIdentify the model, view-controller in Picasso

Nov 17, 2021 Sprenkle - CSCI209 26

26

11/17/21

14

Picasso GUI

Nov 17, 2021 Sprenkle - CSCI209 27

ButtonPanel

F r a m
e

Canvas
(displays Pixmap)

JButton
Picasso’s GUI uses classes from
two main Java packages:
• Abstract Windowing Toolkit:
java.awt

• Swing: javax.swing

27

Understanding GUI Code
•In ButtonPanel.java, buttons are associated

with a command or action

Nov 17, 2021 Sprenkle - CSCI209 28

private Canvas myView;
…
public void add(String buttonText, final Command<Pixmap> action) {

JButton button = new JButton(buttonText);
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
action.execute(myView.getPixmap());
myView.refresh();

}
});
add(button);

}

28

11/17/21

15

Understanding GUI Code
•In ButtonPanel.java, buttons are associated

with a command or action

Nov 17, 2021 Sprenkle - CSCI209 29

private Canvas myView;
…
public void add(String buttonText, final Command<Pixmap> action) {

JButton button = new JButton(buttonText);
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
action.execute(myView.getPixmap());
myView.refresh();

}
});
add(button);

}

JButton’s ActionListener says
what to do when button is pressed

29

Understanding GUI Code
•In ButtonPanel.java, buttons are associated

with a command or action

Nov 17, 2021 Sprenkle - CSCI209 30

private Canvas myView;
…
public void add(String buttonText, final Command<Pixmap> action) {

JButton button = new JButton(buttonText);
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
action.execute(myView.getPixmap());
myView.refresh();

}
});
add(button);

}

30

11/17/21

16

Understanding GUI Code
•In ButtonPanel.java, buttons are associated

with a command or action

Nov 17, 2021 Sprenkle - CSCI209 31

private Canvas myView;
…
public void add(String buttonText, final Command<Pixmap> action) {

JButton button = new JButton(buttonText);
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
action.execute(myView.getPixmap());
myView.refresh();

}
});
add(button);

}

Defines an anonymous inner class and
creates an object of that type.
Benefits: can access private data in class

31

Anonymous Inner Classes
•Common way to write (certain) code
•No classname
ØClass is anonymous

•Extends a parent class or implements an interface

Nov 17, 2021 Sprenkle - CSCI209 32

new ActionListener() {
public void actionPerformed(ActionEvent e) {

action.execute(myView.getPixmap());
myView.refresh();

}
}

the parent class/interface

Method implementations

32

11/17/21

17

Picasso GUI: ButtonPanel

Nov 10, 2021 Sprenkle - CSCI209 33

JButton
Command

Evaluator
execute(T target)

Command
execute(T target)

interface

association

(within ButtonPanel)
…When button pressed,

call the command’s
execute method

ButtonPanel

JButton

33

Understanding Picasso Code
•Start in Evaluator command’s execute method

Nov 17, 2021 Sprenkle - CSCI209 34

34

11/17/21

18

TODO
•Project Analysis due Friday before class

Nov 17, 2021 Sprenkle - CSCI209 35

35

