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Objectives
•Picasso Design
•Reflection
•GUIs in Java
ØAnonymous inner classes
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Typical Trajectory of Projects
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This code is too complex!
I can’t understand this/do this project!
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Typical Trajectory of Projects
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This code is too complex!
I can’t understand this/do this project!

I am starting to get it.
I have the mental model for the code base
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Typical Trajectory of Projects
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This code is too complex!
I can’t understand this/do this project!

I am starting to get it.
I have the mental model for the code base

I am confident enough to write a little code
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Typical Trajectory of Projects
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This code is too complex!
I can’t understand this/do this project!

I am starting to get it.
I have the mental model for the code base

I am confident enough to write a little code

I get it! I am writing code 
and redesigning as necessary

Time committed to project
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Our Responsibilities
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This code is too complex!
I can’t understand this/do this project!

I am starting to get it.
I have the mental model for the code base

I am confident enough to write a little code

I get it! I am writing code 
and redesigning as necessary
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You: Adopt a growth mindset.
Try, Learn, Ask questions

Me: Support, Cheerlead, Answer questions
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Review
• What is the goal of the Picasso project?
• When you click the Evaluate button in the given version of Picasso, it 

generates the image for floor(y)
Ø Explain why the image looks like the image:
Ø Include the constraints/rules of Picasso

• How does an interpreter interpret a programming language?
Ø How do those steps map to the Picasso code base?

• What should we think about during design and analysis of a project? 
Ø What are best practices?

• How should we learn a code base?
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Review: Picasso Project Overview
• Goal: Generate images from expressions
• Every pixel at position (x,y) gets assigned a color, 

computed from its x and y coordinate and 
the given expression
ØRange for x and y is [-1, 1]

• Colors are represented as RGB 
[red, green, blue] values
ØComponent’s range [-1, 1]
ØBlack is [-1,-1,-1]
ØRed is [1,-1,-1]
ØYellow is [1, 1,-1]
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-1, -1 x
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1, 1

1, -1

-1, 1

Points are (x,y)
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Review: Generating Images from Expressions
•Expressions at a specific (x,y) point/pixel evaluate 

to RGB colors [r,g,b]
Ø pixels[x][y] = expression.evaluate(x, y)

•x evaluates to RGB color [x, x, x] 
•In top right corner,
• x evaluates to [1, 1, 1]
• y evaluates to [-1, -1, -1]
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Review: Generated Expressions
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For all x:
For all y:

pixels[x][y] = expression.evaluate(x, y)

[-1, 1, -1] x x*y
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Review: Programming Language Design
•Must be unambiguous
ØProgramming Language defines a syntax and 
semantics

•Interpreting programming languages
1. Parse program into tokens
2. Verify that tokens are in a valid form
3. Generate executable code
4. Execute code
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Review: Interpreting the Picasso Language
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Understanding the Code
•How does the given code map to lexical analysis, 

semantic analysis, and evaluation components?
ØLook for packages, classes that map to these steps

•Suggestions:
ØLook for important words/terms from problem 

domain
ØLook for terms from design patterns
ØPut code in black boxes or group code together
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Process of Understanding Code: 
Building Your Mental Model
•Look for important words/terms from problem 

domain
•Look for terms from design patterns
•Put code in black boxes or group code together
•Example:
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Lexical 
Analyzer

Picasso 
Expression TokenTokenTokens

tokens.*
Tokenizer,
Java’s StreamTokenizer
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Interpreting the Picasso Language
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tokens.*

parser.*
expressions.*

Tokenizer,
Java’s StreamTokenizer
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Process of Understanding Code: 
Building Your Mental Model
•Apply spiral model to understanding code
•Review problem specification (low-cost effort)
•Explore code at the top-level (low-cost effort)
ØLook at packages, class names
ØDon’t take a deep-dive until you have the bigger 

picture
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Process of Understanding Code: 
Building Your Mental Model
• After you have the big picture, look at most important classes
• Decide: Does this class merit a closer look?  Or do I just need 

the big picture of what it does?
ØLean towards the latter towards the beginning

• Iterate!
ØGrow your mental model
ØWhat a “closer look” means changes over time

• Early: what methods does the class have? What classes does this object 
interact with?

• Later: what do these methods do?  How does this class interact with other 
objects? 
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Interpreting the Picasso Language
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Interpreting the Picasso Language
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Understanding the Code: Lexical Analysis
•Process
Øpicasso.parser.Tokenizer
Øpicasso.parser.tokens.TokenFactory

•Output: 
Øpicasso.parser.tokens.*
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Understanding the Code: Semantic Analysis
•Process
Øpicasso.parser.ExpressionTreeGenerator
Øpicasso.parser.SemanticAnalyzer
Øpicasso.parser.*Analyzer

•Output
Øpicasso.parser.language.expressions.*

Nov 17, 2021 Sprenkle - CSCI209 21FloorAnalyzer
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Understanding the Code: Evaluation
•Process
Øpicasso.parser.language.
ExpressionTreeNode

•Output: 
Øpicasso.parser.language.expressions.
RGBColor

•Displayed in PixMap on Canvas
Nov 17, 2021 Sprenkle - CSCI209 22Floor
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Understanding the Code: Evaluation
•Key Parent class: 
picasso.parser.language.ExpressionTreeNode

•“Old” version of expressions:
ØReferenceForExpressionEvaluations
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public abstract RGBColor evaluate(double x, double y);
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Using Reflection in Java
•Reflection allows us to create objects of a class 

using the name of the class
•Example adapted from MutantMaker: 

Nov 17, 2021 Sprenkle - CSCI209 24

public static void initMutantMaker() {
mutants = new Mutant[numMutants];
mutants[0] = new Wolverine();
for (int i = 1; i < numMutants; i++) {

Class<?> mutantClass;
try {

mutantClass = Class.forName("mutants.Mutant"+ i);
mutants[i] = (Mutant)  

mutantClass.getDeclaredConstructor().newInstance();
} catch (Exception e) {

e.printStackTrace();
}

}
}
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Using Reflection in Java
• Can create objects of a class through the name of the class
• Used in SemanticAnalyzer

ØGets list of functions
• Read from conf/functions.conf

ØMaps a token to the class responsible for parsing that type of 
token

ØWhen SemanticAnalyzer sees that token, calls the respective 
analyzer to parse

ØExample: FloorToken maps to the FloorAnalyzer
• FloorAnalyzer pops the Floor token off the stack and then parses the 

(one) parameter for the floor function
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Understanding Code: A Top-Down Approach
•Run program
•Start at Main.java
ØFollow calls to see how GUI is created
•Breadth- or depth-first search

ØWhat classes make up the GUI?

•GUIs often follow the MVC design pattern
ØIdentify the model, view-controller in Picasso
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Picasso GUI
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ButtonPanel

F r a m
e

Canvas 
(displays Pixmap)

JButton
Picasso’s GUI uses classes from 
two main Java packages:
• Abstract Windowing Toolkit: 
java.awt

• Swing: javax.swing
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Understanding GUI Code
•In ButtonPanel.java, buttons are associated 

with a command or action
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private Canvas myView;
…
public void add(String buttonText, final Command<Pixmap> action) {

JButton button = new JButton(buttonText);
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
action.execute(myView.getPixmap());
myView.refresh();

}
});
add(button);

}
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Understanding GUI Code
•In ButtonPanel.java, buttons are associated 

with a command or action
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private Canvas myView;
…
public void add(String buttonText, final Command<Pixmap> action) {

JButton button = new JButton(buttonText);
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
action.execute(myView.getPixmap());
myView.refresh();

}
});
add(button);

}

JButton’s ActionListener says 
what to do when button is pressed
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Understanding GUI Code
•In ButtonPanel.java, buttons are associated 

with a command or action
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private Canvas myView;
…
public void add(String buttonText, final Command<Pixmap> action) {

JButton button = new JButton(buttonText);
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
action.execute(myView.getPixmap());
myView.refresh();

}
});
add(button);

}
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Understanding GUI Code
•In ButtonPanel.java, buttons are associated 

with a command or action
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private Canvas myView;
…
public void add(String buttonText, final Command<Pixmap> action) {

JButton button = new JButton(buttonText);
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
action.execute(myView.getPixmap());
myView.refresh();

}
});
add(button);

}

Defines an anonymous inner class and 
creates an object of that type.
Benefits: can access private data in class 
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Anonymous Inner Classes
•Common way to write (certain) code
•No classname
ØClass is anonymous

•Extends a parent class or implements an interface
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new ActionListener() {
public void actionPerformed(ActionEvent e) {

action.execute(myView.getPixmap());
myView.refresh();

}
}

the parent class/interface

Method implementations
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Picasso GUI: ButtonPanel
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JButton
Command

Evaluator
execute(T target)

Command
execute(T target)

interface

association

(within ButtonPanel)
…When button pressed, 

call the command’s 
execute method

ButtonPanel

JButton
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Understanding Picasso Code
•Start in Evaluator command’s execute method
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TODO
•Project Analysis due Friday before class
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