
12/1/21

1

Objectives
•Decorator design pattern

Dec 1, 2021 Sprenkle - CSCI209 1

1

Review
• What is the singleton design pattern?

ØWhen is it useful?
ØHow is it implemented?

• What is the process for evaluating an expression?
ØConsider floor(y) and floor(floor(y))

• Resulting image will not be different
ØName the components, methods called

• Template: A calls B’s c method, passing in d and e; the method returns f
ØMap back to what these components represent, as appropriate

Dec 1, 2021 Sprenkle - CSCI209 2

2

12/1/21

2

Review: Generating Images from Expressions

Nov 15, 2021 Sprenkle - CSCI209 3

(-1, -1) x

y

(1, 1)

(1, -1)

(-1, 1)

For all x:
For all y:

pixels[x][y] = expression.evaluate(x, y)

Consider evaluating expression as
f(x, y) = expression

at various points in the image

Example: expression is x+y

3

Expression Evaluation

Nov 29, 2021 Sprenkle - CSCI209 4

Expression
TreeNode evaluate(double x, double y) RGBColor

Pixmap
(x,y) coordinates

Evaluate expression at each x, y coordinate
Returns the RGBColor that should be displayed
at that coordinate

4

12/1/21

3

Review: Singleton Design Pattern
•Goal: Only one object of a class
•How to achieve
ØMake the constructor private
ØMake a public method for accessing the one and only

instance

Dec 1, 2021 Sprenkle - CSCI209 5

5

Picasso Notes
•Given code base is not perfect but pretty good
•Example imperfections

ØMissing comments/Javadocs
ØIncorrect comments
ØLess-than-ideal naming
ØCharToken takes an int as a parameter? (rather than a
char)

•Project goal: you’re gaining experience
ØYou’ll work with imperfect code bases in the future

Dec 1, 2021 Sprenkle - CSCI209 6

6

12/1/21

4

Picasso: Your Team’s Javadocs
•Automatically generated from main branch at

3:58 a.m. every day
•Linked from Documentation section of Picasso

project page

Dec 1, 2021 Sprenkle - CSCI209 7

7

FAQ for Picasso
•Linked from the specification page
•Updated as I get new questions

Dec 1, 2021 Sprenkle - CSCI209 8

8

12/1/21

5

Preliminary Implementation
•Goals
ØGet your team working together
ØFind kinks in design
•Rework now instead of later

•Tag your version
•Can keep working after that
ØReturn to the tagged version for Friday’s demo

Dec 1, 2021 Sprenkle - CSCI209 9http://cs.wlu.edu/~sprenkle/cs209/projects/final_proj.php#deliverables

9

Ungraded Objectives
• Think about what you need to complete for the final

implementation.
• With your current design, how well does your design

extend for the next steps?
ØNext steps include the other/different types of

expressions/functions, extensions
ØWhat could be designed better (i.e., make it easier to add these

other parts)?
• An hour of thinking about the design and changing the

code to improve the design will be worth hours of time
later.

Dec 1, 2021 Sprenkle - CSCI209 10

10

12/1/21

6

DECORATOR DESIGN PATTERN

Dec 1, 2021 Sprenkle - CSCI209 11

11

What’s Your Drink?
•You go into a coffee shop: what is your drink?

•How can we represent the various beverages in
code?

•What are the possible implementation issues?

Dec 1, 2021 Sprenkle - CSCI209 12

12

12/1/21

7

What’s Your Coffee Drink?

Dec 1, 2021 Sprenkle - CSCI209 13

Beverage
description
milk
soy
flavoring
whippedcream
getDescription()
cost()
hasMilk()
setMilk()
…

How many additional methods
will we need to add to create a
comprehensive beverage object?

How will we compute cost?

What happens when a new
beverage feature is added?

13

One Solution: Decorator

Dec 1, 2021 Sprenkle - CSCI209 14

Beverage
getDescription()
cost()

HouseBlend

cost()

Espresso

cost()

CondimentDecorator
getDescription()
cost()

Mocha

getDescription()
cost()

Soy

getDescription()
cost()

UML Diagram

14

12/1/21

8

Latte’s Implementation

Dec 1, 2021 Sprenkle - CSCI209 15

public class Latte extends Beverage {

private double cost;

public Latte() {
this.cost = 3.75;

}

public String getDescription() {
return "Latte";

}

public double cost() {
return this.cost;

}
}

One possibility
(could keep state differently)

15

Mocha’s Implementation

Dec 1, 2021 Sprenkle - CSCI209 16

public class Mocha extends CondimentDecorator {

private Beverage beverage;

public Mocha(Beverage beverage) {
this.beverage = beverage;

}

public String getDescription() {
return beverage.getDescription() + ", Mocha";

}

public double cost() {
return .20 + beverage.cost();

}
} What design patterns are used within this class?

How would we use this class?
How would we create other beverages?

16

12/1/21

9

Mocha’s Implementation

Dec 1, 2021 Sprenkle - CSCI209 17

public class Mocha extends CondimentDecorator {

private Beverage beverage;

public Mocha(Beverage beverage) {
this.beverage = beverage;

}

public String getDescription() {
return beverage.getDescription() + ", Mocha";

}

public double cost() {
return .20 + beverage.cost();

}
} Generalize: when to use the Decorator pattern,

tradeoffs of this design pattern?

Handles part it knows about,
Delegates rest to Beverage;

Example of OCP

17

Using Beverages

Dec 1, 2021 Sprenkle - CSCI209 18

public class CoffeeGeneral {

public static void main(String[] args) {
Beverage b = new DarkRoast();
System.out.println(b.getDescription() + " $" + b.getCost());

Beverage b2 = new DarkRoast();
b2 = new Mocha(b2);
b2 = new Mocha(b2);
b2 = new Whip(b2);
System.out.println(b2.getDescription() + " $" + b2.getCost());

}
}

18

12/1/21

10

Design Pattern: Decorator
• Adds behavior to an object dynamically

ØTypically added by doing computation before or after an
existing method in the object

• Benefits:
ØAlternative to inheritance
ØCan add any number of decorators
ØEach class is responsible for just one thing

• Possible drawback:
ØCould add many small classes à less than straightforward for

others to understand

Dec 1, 2021 Sprenkle - CSCI209 19
Have we seen decorators used in practice?

19

Change in Requirements
•Beverage class has two new methods:
setSize(…) and getSize()

•Condiments should be charged according to size
ØExample: Soy costs 10¢, 15¢ and 20¢ respectively for

small, medium, and large

Dec 1, 2021 Sprenkle - CSCI209 20

How would you alter the decorator classes
to handle this change in requirements?

20

12/1/21

11

Handling Change in Requirements

Dec 1, 2021 Sprenkle - CSCI209 21

public double cost() {
double cost = beverage.cost();

if (getSize() == Beverage.SMALL) {
cost += .10;

} else if (getSize() == Beverage.MEDIUM) {
cost += .15;

} else if (getSize() == Beverage.LARGE) {
cost += .20;

}
return cost;

}

21

Represent Thanksgiving?

Dec 1, 2021 Sprenkle - CSCI209 22

dinner = new Turkey(new Duck(new Chicken()));

22

12/1/21

12

ECLIPSE DEBUGGER

Dec 1, 2021 Sprenkle - CSCI209 23

23

Eclipse Debugger
1.Set breakpoint
ØNear and BEFORE point of failure

2.Run program in debug mode
Ø Program pauses when it hits a breakpoint

3.Inspect variables
4.Step through program, inspecting variables
Ø Step into, over, and return

Dec 1, 2021 Sprenkle - CSCI209 24

24

12/1/21

13

Commands
• Step Into

ØExecutes the current line
ØIf the current line is a method call, the debugger steps into the

method’s code
• Step Over

ØExecutes a method without stepping into it in the debugger
• Step Return

ØSteps out to the caller of the currently executing method
ØFinishes the execution of the current method and returns to

the caller of this method

Dec 1, 2021 Sprenkle - CSCI209 25

25

Looking Ahead
•Friday: Preliminary Deadline and Demos
•Order of teams will be randomly generated on

Friday
ØSchedule: 8:35, 8:47, 9:00, 9:14
ØSchedule: 11:05, 11:17, 11:30, 11:44

•Next steps:
ØHow will you add reading expressions from a file?
ØHow will you add other components?

Nov 29, 2021 Sprenkle - CSCI209 26

26

