Chapter Twelve

Jbject-Oriented Software

Development
Analysis and Design

Summing Up
You have seen several class definitions, modified some classes, implemented class
member functions (in programming projects for Chapters 6 through 11), and per-
haps completely implemented a few classes (in programming project 8H, “The e1-
evator Class”; 10K, “The stats Class”; or 11E, “The set Class”). All of these previ-
ous activities relate to the implementation of classes.

Coming Up
This chapter discusses another facet of the object-oriented paradigm—the analysis
and design of a system with objects as the main building blocks.

You will study an object-oriented software development strategy in the context
of a real-world problem—building a jukebox system for a campus student center.
The analysis in this chapter will help the programming team design the class defi-
nitions and implement the member functions in Chapter 13. After studying this
chapter, you will be able to

#* identify classes that model a solution to a problem

* assign responsibilities to classes

* use Component/Responsibility/Helper cards to aid analysis and design

#* understand the need for analysis and design before implementation

Analysis and design projects to reinforce object-oriented development

435

CHAPTER TWELVE

OBJECT-ORIENTED SOFTWARE DEVELOPMENT: ANALYSIS AND DESIGN

12.1 Object-Oriented Analysis

436

So far, we have only considered individual classes and some low-level design issues,
such as where the data members should go in a C++ class, why constructors are
needed, and member function implementations. However, before individual classes
are designed and implemented, they are first recognized as part of some larger soft-
ware system.

This section introduces an object-oriented design (OOD) methodology in the
context of a real-world problem—the cashless jukebox. The strategy is based on the
responsibility-driven design methodology of Wirfs-Brock, Wilkerson, and Wiener
[Wirfs-Brock 90].

Another major component of object-oriented software development is the Com-
ponent/Responsibility/Collaborator (CRC) card introduced by Kent Beck and Ward
Cunningham [Beck/Cunningham 89]. This simple and effective tool consists of a set
of 3-by-5-inch index cards. CRC cards were first used to help people understand
object technology. Developers employ them to develop large-scale, object-oriented
systems. Because the word collaborator has caused confusion, CRC cards will hence-
forth be referred to as Component/Responsibility/Helper (CRH) cards.

The first step in object-oriented analysis involves identification of the key ab-
stractions—the major classes. The system is modeled as a set of classes, each with
its own responsibilities. You will see how team members “become” an object through
role playing. Playing the roles of the objects helps the team identify the responsibili-
ties of each while determining the relationships between them. Role playing helps
the team understand the problem, model a solution, and iron out the rough spots
early in development, when it is relatively cheap and easy to do so.

Self-Check

To warm up to an object-oriented view of systems, first answer each of the
following “Pre-Check” questions. Look at the answer for each before going

on to the next. These “Pre-Check” questions are intended to get you to
understand the essentials of planning the design of some larger systems.

12.1 OBJECT-ORIENTED ANALYSIS

12-1 On one piece of paper, sketch the design of a small one-branch bank
such that someone unfamiliar with the system would understand
the major components, the key purpose of each, and any interaction
between those components.

12-2° On one piece of paper, sketch the design of a small one-branch
library such that someone unfamiliar with the system would
understand the major components, the key purpose of each, and any
interaction between those components.

12.1.1 The Problem Specification

In the spring of 1997, the author suggested building a CD music jukebox using a
200-capacity compact-disc player. Sophomore Ed Slatt,a computer engineering ma-
jor, guaranteed that he would figure some way to control that CD player from a
computer. By the end of the semester, Ed had a prototype infrared remote (IR) unit
working. He used a circuit design that Chris Dodge has made available on the Web.!
His 1RDEV class and some assembler code were wrapped up in a cdPlayer class. This
allowed messages like these that play the fifth track on the CD in the third tray of a
seven-disc CD player:

// Construct an object that can send signals to a real CD player
cdPlayer myCdPlayer;

// Play the fifth track in the third tray of the physical CD player
myCdPlayer.play(3, 5);

Ed then went on to pursue his computer engineering degree.

In the fall of 1997, several students asked the same author to provide an honors
option for the first course in the computer science major. They decided to build the
jukebox. The events you are about to read are based on this true story. The following
problem statement begins the project:

1. At the time of this writing, Chris Dodge has the information located at this URL: http:/
www.ee.washington.edu/eeca/circuits/PCIR/Welcome.html

437

CHAPTER TWELVE

438

OBJECT-ORIENTED SOFTWARE DEVELOPMENT: ANALYSIS AND DESIGN

PROBLEM STATEMENT FOR THE CASHLESS JUKEBOX

The Student Affairs office has decided to put some new-found activity fee funds toward
a music jukebox in the student center. The jukebox will allow a student to play indi-
vidual songs. No money will be required. Instead, a student will swipe a magnetic stu-
dent ID card through a card reader. Students will each be allowed to play up to 1,500
minutes worth of “free” jukebox music in their academic careers at the school, but never
more than two selections on any given date. A student may select a CD from the avail-
able collection of CDs and then an individual song from that CD. Students may not play

entire CDs.

This project is now assigned to a team that includes Blaine, Director of Student
Affairs. Blaine is playing the role of the domain expert—the person who knows about
student policies. His office is in the student center, not far from where the jukebox
might be installed. Blaine also represents the clieni—the one with the money. The
team will also have an object expert—Chelsea—to help guide the team though this,
their first try at object-oriented software development. Chelsea’s experience and
knowledge of object-oriented design heuristics will likely help the team make better
design decisions. The team has two chemical engineering majors—dJessica and Ja-
son—who are taking an honors option in the middle of a first programming course.
Also on the team are Matt, a computer engineering major, and Steve, an engineering
science major, who are both taking the introductory course. The team also has Charlie,
a second-year computer science major who promised to help Matt implement the
jukebox (see Chapter 13). Charlie has more programming experience than any of
the other team members. The team is completed by Misty, who is deciding between a
math or a computer science career.

At the first meeting, the team decides to hammer out an idea of what this cash-
less jukebox should be able to do. During analysis, the team will be concerned with
what the system must do. The team will not worry too much over the how. During
analysis, the terminology and activities relate to those who requested the software.
The analysts should be able to communicate their thoughts with those who requested
the software. The analyst must also

* work with the clients to refine requirements

challenge the requirements

* probe for missing information

12.1 OBJECT-ORIENTED ANALYSIS

12.1.2 The Goal of the Analysis Phase

The goal of the analysis phase is to create an abstract model in the vocabulary of the
client (the Student Affairs office, in this case). This can be accomplished by way of
the following three-step strategy:

1. Identify classes that model (shape) the system as a natural and sensible
set of abstractions.

2. Determine the purpose, or main responsibility, of each class. The respon-
sibilities of a class are what an instance of the class must be able to do
(member functions) and what it must know about itself (data members).

3. Determine the helper classes for each. To help complete its responsibili-
ties, a class typically delegates responsibility to one or more other ob-
jects. These are called helpers.

Before the team begins to analyze the problem, Chelsea tells them that soft-
ware developers do not immediately find all classes. It is also unlikely that all re-
sponsibilities will be discovered in the first pass. Some of the helper classes may
also be missed. It is perfectly acceptable to change the list and names of the classes
that shape the solution as the problem is considered over time. Also, new classes
may be required when moving into the design and implementation phases.

For now, don’t worry about creating the perfect model. There are many false
starts. And because analysis sometimes recognizes uncertainty in a problem state-
ment, there may be some new concerns that need to be settled. The team will be
trying to understand the requested software system at the level of those requesting
the software.

Also realize that there is rarely one true correct best design. Relax. Tell yourself
now that all designs are valid. So don’t be afraid to make mistakes. It is much easier
to change things during analysis and design than after the system has been de-
ployed.

12.1.3 Identification of Classes that Model the Solution

The first goal, or deliverable, in object-oriented software development is a set of
classes that potentially model the system. Each class will be assigned its major
responsibility.

One simple tool for getting started is to write down all the reasonable nouns
and noun phrases in the problem statement. Consider these as potential classes
representing part of the solution. You may also record potential classes even if they

439

CHAPTER TWELVE

440

OBJECT-ORIENTED SOFTWARE DEVELOPMENT: ANALYSIS AND DESIGN

were not written as nouns in the problem statement. For example, someone on the
team with expertise in the problem area may suggest useful classes due to his or her
understanding of the domain—in this case, students and music. Potential classes
may come from words that are spoken while describing the system or questioning
the problem statement. In summary, useful classes for modeling the system may
come from sources such as these:

the problem statement

* anunderstanding of the problem domain (knowledge of the system that the

problem statement may have missed or taken for granted)

the words floating around in the air during analysis of the problem
And while considering potential classes, consider the following object-oriented de-
sign heuristic:

OBJECT-ORIENTED DESIGN HEURISTIC 12.1 (RIEL’S 3.6)

Model the real world whenever possible.

This design heuristic leads to more understandable software. It not only helps dur-
ing analysis, but also during maintenance when someone unfamiliar with the system
must fix a bug, add an enhancement, or update the software to match real-world
changes.

The team established the following list of noun phrases from the problem state-
ment (redundant entries were not recorded).

NouN PHRASES—ALL NOUNS IN THE PROBLEM STATEMENT

Student Affairs office minutes student ID card student
activity fee funds date academic careers money
music jukebox card reader student center CD
collection of CDs selection jukebox music song

The noun phrases of a problem statement fall into three categories that indicate
their potential viability as classes to model a solution.

1. somewhat sure
2. not sure
3. should not be considered—irrelevant or has the propensity to muddle

There are many guidelines intended to help us discover useful classes. One
guideline has already been used above—eliminate redundant entries. There was no

12.1 OBJECT-ORIENTED ANALYSIS

useful purpose for writing down “student” three times, for example. Only consider
the noun phrases that have meaning in the realm of the system. The activity fee
funds provide the money to pay for the jukebox; however, that money will not be part
of the design.

The following set of noun phrases represents a first attempt to identify the key
abstractions in the problem statement (irrelevant nouns omitted).

PoteNTIAL CLASSES—A FIRST PASS AT FINDING KEY ABSTRACTIONS

Somewhat Sure Not Sure
jukebox activity fee funds
student money

song jukebox music
card reader date

student ID card

CD

collection of CDs

Self-Check

12-3 Write a list of potential classes after reading the following problem
statement: (Note: This problem specification will be used in later
self-check questions.)

The college library has requested a system that supports a small
set of library operations. Students may borrow books, return those
borrowed books, and pay fees. The late fee and due date have been
established as follows:

Late Fee Borrowing Period
Books: $0.50 per day 14 days

The due date is set when a borrowed item is checked out. A student
may borrow only seven books. Any student with seven books
checked out may not borrow anything more.

The team considers each potential class in more detail for help in understand-
ing the system.

441

CHAPTER TWELVE

442

OBJECT-ORIENTED SOFTWARE DEVELOPMENT: ANALYSIS AND DESIGN

12.1.3.1 Jukebox? YES, coordinates all activities

The programmers on the team feel that jukeBox seems an appropriate name for the
class that will be responsible for coordinating activities such as handling requests
from the users of this system. There might be one instance of jukeBox in the pro-
gram that gets things going and keeps things going.

12.1.3.2 Student? YES, maintains student information

It is suggested that a class named student will prove itself a useful abstraction for
modeling the users. After all, students will be involved in playing music. Chelsea
advises the team to distinguish between the human version of the student that
approaches the jukebox with a student ID card and the software model of that stu-
dent stored inside the computer. A friendly argument ensues. Although no one seems
to recognize it at first, the confusion is due to the name student. Steve suggests that
the team employ the name “user” to indicate the physical student that uses the
jukebox. The programmers agree to keep student as the name of the class that
models that physical real-world user. student is the software equivalent of “user.”

12.1.3.3 Song? NO; Track? YES, one of the tracks on a CD

Because students are allowed a certain amount of play time in minutes, it appears
that song would be a useful class. Each song object should know its playing time in
minutes and seconds along with its title. Jason and Jessica see this as an instance of
the State Object pattern they learned about earlier in their first computer science
course.

Matt changes the subject by claiming that there are some CDs that put two
songs into one track. Other CDs have some blank air time at the end. Blaine ob-
serves, “Rock and roll has changed since I was young.” He can’t believe what he is
hearing. Additionally, Charlie relates that he has a Beethoven CD where one “song”
(symphony, actually) is distributed over several tracks. Each track is a movement—
the first movement, the second movement, and so on.

Chelsea indicates that the team can better communicate the design if the name
is changed to track. The user will select a track from a CD. That sounds better.

12.1.3.4 Card reader? YES, the object used to read the magnetic student ID cards

The card reader is one of several physical objects in the cashless jukebox. Should it
be a class? No one is sure. Ed suggests that magnetic card readers are easy to come
by. It may be a useful abstraction. After a quick check on the Web, Jessica produces

12.1 OBJECT-ORIENTED ANALYSIS

this picture of a combination keyboard and magnetic card reader to solidify the
concept of a card reader.

Ficure 12.1. Magnetic card reader keyboard

Picture courtesy of B & C Data Systems, Gorham, Maine

Although the physical card reader exists, it will still be useful to have a soft-
ware abstraction for this physical entity—analogous to the user/student relation-
ship. The team decides to use the class name cardReader for the object that gets
input from magnetic ID cards.

12.1.35 Student ID card? NO, the object inserted into the magnetic card reader

The student ID card is one of several physical objects in the cashless jukebox. How-
ever, the team decides it is “outside” the system. Although it allows students to gain
access to the jukebox, it need not be modeled. It is already done. Every student has
a student ID card.

Chelsea congratulates the team as she tells them about a widely accepted ob-
ject-oriented design heuristic:

OBJECT-ORIENTED DESIGN HEURISTIC 12.2

Eliminate classes that are outside the system.

According to Arthur Riel [Riel 95], the hallmark of such a class is one whose only
importance to the system is the data contained in it. While the student identifica-
tion number might be of great importance, the system should not care whether the
ID number was read from a swiped magnetic ID card, typed in at the keyboard, or “if
a squirrel arrived carrying it in his mouth.”

12.1.3.6 CD? YES, each cD object stores a collection of tracks

Someone on the team doesn’t agree that cb should be a key abstraction. Jason, one
of the computer science majors, chimes in and suggests, “This is not a problem, I can

443

CHAPTER TWELVE

444

OBJECT-ORIENTED SOFTWARE DEVELOPMENT: ANALYSIS AND DESIGN

visualize a CD object as a vector of tracks.” Blaine asks, “What is a vector?” Chelsea
tries to rectify unfamiliar and differing terminology with some anthropomorphic
object-speak: “A ¢D is responsible for knowing what tracks it has.” Blaine complains
that Chelsea is trying to give human qualities to the CD. Jessica responds that this
is precisely what anthropomorphism means. She also heard in her CmpSc class that
giving human qualities to objects happens quite often during object-oriented soft-
ware development. It really helps.

Steve still has a problem with the singularity of a CD and a song: “Certainly the
system must maintain many CD objects, each of which may store many songs. How
can we talk about just one class when there are many songs on so many CDs?” Jason
retorts that one class is used to create many instances, or objects. And right now, the
team should concentrate on identifying classes to model the real-world components
that are part of a jukebox.

Steve agrees that there should be more than one CD for students to choose.
Jason relates how they have just learned about two different container classes for
storing collections of objects—vectors and bags. “Bags and vectors?” wonders Blaine.
Jessica tells Blaine that he needn’t worry about these implementation details and
reminds Jason that the programming team can choose the appropriate container
class later. Instead, Jessica introduces the notion of a class that is responsible for
storing all the CDs. Steve asks if we could rename this cdCollection. The team
unanimously approves.

12.1.3.7 Collection of CDs? YES, all CDs that could be listened to

Jason is thinking that behind the public interface of the cdCollection class, the
data members may include a vector of CD objects and the number of CDs physically
stored in the CD player. Matt suggests that someone will have to make sure the
software version is always in sync with the physical CD collection. Chelsea encour-
ages the team to postpone these implementation details for now.

12.1.4 Any Other Classes?

Steve and Matt launch into a discussion about who is allowed to play a track.
Shouldn’t a collection of students also be maintained? Jason agrees, but he com-
plains it may be difficult to keep a collection of all valid students. Should the juke-

12.1 OBJECT-ORIENTED ANALYSIS

box allow anyone in the world with a magnetic ID card to play a track? How might
the system prevent unauthorized access? It appears certain that some part of the
cashless jukebox will have to maintain a collection of students. Although the noun
phrase “collection of students” does not exist in the problem statement, Jessica says
that it helps her to think of a studentCollection class that is responsible for main-
taining the time credit available for each student. Chelsea recommends the team go
with their instincts and add a studentCollection class to the design.

12.1.41 studentCollection stores a list of students who could select songs

Of the original set of potential classes, all but one survived the first cut at modeling
the system. Two new key abstractions (classes) were added. One is for storing the
collection of CDs. The other maintains the list of students who are allowed to use the
jukebox. However, an uneasy feeling pervades the team. Misty thinks there is some-
thing missing. The team reviews the classes. Ed suggests that there must be some
object that actually plays the selected song.

Jessica suggests a solution. The team could purchase an old jukebox and modify
it to allow card swipes. However, this would not prevent students from playing more
than two songs on any given date. Ed says that a computer could be hooked up to the
jukebox. Then the computer would be responsible for reading student ID cards and
sending play messages to the physical jukebox. The physical jukebox has the re-
sponsibility of selecting the physical CD and playing the correct track. Commer-
cially available jukeboxes do this. Ed states that another major advantage derives
from the fact that jukeboxes also have built-in stereo systems. This could save money.
Blaine reminds Steve that the student center already has a potent stereo system.
Any money saved on this project could be funneled back into other student projects.
So, as is done in the world of business, a decision must be made that relates to the
bottom line.

Chelsea investigates on the Internet and finds a place to purchase a CD juke-
box that holds 50 CDs. It looks very cool. However, it lists for $4,500. And this does
not include the CDs. However, according to the Wurlitzer Jukebox Co. representa-
tive, they could probably modify their jukebox to allow magnetic ID card input.

445

CHAPTER TWELVE

OBJECT-ORIENTED SOFTWARE DEVELOPMENT: ANALYSIS AND DESIGN

Ficure 12.2. The Wurlitzer “One More Time” CD Jukebox

446

Picture courtesy of Wurlitzer Jukebox Co., Pittsburgh, Pennsylvania

The team considers cost alternatives. Matt informs the team that the computer
department has some personal computer components sitting around gathering dust.
He suggests that for little or no money, he could put together a computer capable of
implementing the appropriate classes. A card reader keyboard would have to be
purchased no matter what.

Charlie suggests that a computer could be connected to a 200- or 300-disc CD
player. The CD player in turn could easily be connected to the existing student cen-
ter stereo system. Chelsea reminds the team, “Ed already did this.” The team con-
siders adding another object to model the system—a compact-disc player.

12.1.4.2 cdPlayer plays any track from any CD

The compact-disc player is yet another physical object in the cashless jukebox. But
should it be a class? After all, several electronic stereo manufacturers already imple-
ment this physical device. Chelsea suggests the team try to understand the system
using a common vocabulary. A CD player appears to be a very important part of the
solution. The implementation would come later. The team decides to have a cdPlayer
class to represent the responsibilities of this “real” object—analogous to the student

12.1 OBJECT-ORIENTED ANALYSIS

and cardReader classes, which represent other real objects. The actual CD player has
not been purchased yet. Jessica pulls a picture off the Web to help bring a more con-
crete feel to these abstractions.

Fieure 12.3. Sony CDP-CX200 CD player

Picture courtesy of Sony Electronics Inc.

Now that the team has added a cdPlayer class, Misty suggests the team con-
sider a stereo system class.

The stereo system certainly is part of the entire system. It is yet another one of
those essential physical components. Chelsea asserts that we could consider the
stereo system as part of the cashless jukebox. Its major responsibility is to take the
output from the CD player and produce audible sounds at the right treble, bass, and
volume settings. However, it is reasonable to set boundaries around the system un-
der development. The team decides that sending a song selection message tocdPlayer
represents such a boundary. The prebuilt electronic components will then take over
and perform their well-defined responsibilities. Chelsea excitedly shouts out, “This
is reuse!” The cdpPlayer class is the interface to the music-generating part of this
system. The team agrees that the stereo system is on the other side of the CD player,
well outside the system being designed.

12.1.4.3 Stereo system? NO, amplifies the music

The team feels as though they have captured many key abstractions for this appli-
cation. They have the beginning of a framework for analyzing the problem in more
detail. There is a sense that the primary responsibility of each class has been recog-
nized—or at least implied. Chelsea suggests that the class names be documented
along with their major responsibilities.

Before splitting for pizza, the team documents the classes discovered during
analysis with a sketch that includes

1. the class names

2. the primary responsibility of each class

447

CHAPTER TWELVE OBJECT-ORIENTED SOFTWARE DEVELOPMENT: ANALYSIS AND DESIGN

3. arrows indicating possible message sends to helper classes

4. the boundaries of the software abstractions under development

Ficure 12.4. Analysis sketch of major classes that model a cashless jukebox (subject to change)

T\L" < cardReader

. L Gets student ID
N i)

/]\ studentCollection
Stores valid students

jukeBox
Coordinates activities | ——

cdCollection
\l/ Stores all CDs that can be played

é— cdPlayer \l/
Plays a song track | €/ cp

Chelsea congratulates the team again. The design looks good. Out of the origi-
nal eight noun phrases, one was eliminated (student ID card). The studentCollection

class was discovered as the result of someone knowing something about collections
of data and the necessity for searching for a particular student. Chelsea reports that
such changes are typical. Writing the noun phrases is a tool to help find classes that
effectively model the solution. It doesn’t mean all nouns must become classes. It
doesn’t pretend to find them all. Charlie suggests that some of these classes may
never even get implemented. Chelsea says that other new classes may be discovered
as the team proceeds with role playing.

Self-Check

12-4 Reconsider the key abstractions (classes) for representing the
college library. (See Self-Check 12-3.) Draw a picture like Figure
12.4 above that does the following:

1. lists all the classes that reasonably model the system
2. lists the major responsibility of each class

3. marks the boundary of the system—it’s okay to show entities
that are outside the system

448

12.2 Rort Praving AND CRH CARD DEVELOPMENT

12.2 Role Playing and CRH Card Development

The primary responsibility of each class has now been identified. The team will now
set about the task of identifying and recording other responsibilities. Responsibil-
ity-driven design emphasizes identifying responsibilities and assigning those re-
sponsibilities to the most appropriate class. Chelsea, the object expert, suggests that
the team should often ask questions like this:

#* What is this class responsible for?

#* What class is responsible for a particular action (member function) or spe-

cific knowledge (data member)?

The team will also be identifying helpers. These are classes that one class needs
to help carry out its responsibility. The object-oriented approach views the running
solution as a collection of objects in which each object does its own thing for the good
of the whole. There should not be any all-powerful class that does everything.

The team should try to answer questions such as: What are the other responsi-
bilities needed to model the solution? Which class should take on this particular
responsibility? and What classes help another class fulfill its responsibility? Re-
sponsibilities convey the purpose of a class and its role in the system. These ques-
tions are more easily addressed if the team remembers that each instance of a class
will be responsible for

1. the knowledge that any object of the class must maintain, and
2. the actions that any object of the class can perform.
The team should always be prepared to ask these two questions:

1. What should any object of the class know (knowledge)?

2. What should any object of the class be able to do (action)?

“It’s that anthropomorphism thing again,” moans Blaine, the domain expert from
the Student Affairs office.

Assigning a responsibility to a class means that every instance of that class will
have the same responsibility. This is true when there are many instances of the
class. There will be many ¢D and student objects for example. It is also true when
there may be only one instance of the class—jukeBox and cdCollection for ex-
ample. Later on, during design and implementation, the actions may become public
member functions of a class. The knowledge may become data members.

The responsibilities may be identified from several sources such as:
#* the problem statement (specification)

449

CHAPTER TWELVE

450

OBJECT-ORIENTED SOFTWARE DEVELOPMENT: ANALYSIS AND DESIGN

the classes

* the ideas that float around the room, especially during role playing
These responsibilities must eventually be assigned to the appropriate class, either
to the classes already identified or to new classes if necessary. For example, whose
responsibility is it to play one particular song? This responsibility might be shared
between several classes. jukeBox may send a message to studentCollection to find
out whether or not a user may select a song. jukeBox cannot do this by itself—it
needs help from studentCollection and student. In situations like this, when class
A needs the help of class B, class B is said to be a helper of class A.

The object expert suggests that the team begin to assign responsibilities to classes
using the simple tool of role playing. During role playing, each team member as-
sumes the role of a class to see what happens when a certain situation arises; for
example, what happens when a certain student wants to select a certain track. But
before this is done, the object expert suggests that the team use another simple low-
cost tool for capturing the decisions made during role playing.

12.2.1 CRH Cards

At this point, Chelsea writes the heading “Class:” at the top of a 3-by-5-inch index
card. Under this, she also writes the column headings “Responsibilities:” and
“Helpers:”. Immediately, an inexpensive index card has metamorphosed into a
Component/Responsibility/Helper (CRH) card. A CRH card records a class name,
the responsibilities of the class, and the other classes required to help the class
fulfill those responsibilities—the helpers. Here is an example CRH card with some
possible responsibilities and helpers as it may appear much later in the software
development phase.

Ficure 12.5. CRH card showing what cdCollection might develop into

Class: cdCollection

Responsibilities: Helpers:

know all CDs vector of CDS
retrieve a CD

addNewCD(CD aCD, int trayNumber)
removeCD(int trayNumber)

CD getCD(int trayNumber)

12.2 Rort Praving AND CRH CARD DEVELOPMENT

Although this CRH card for the cdCollection class contains return types and
arguments, CRH cards typically list only the member function names (action re-
sponsibilities). Conversely, the CRH card might well indeed say “know all CDs”
(knowledge responsibility). Knowledge responsibilities may later get turned into
private data members such as vector<CD> my_cds;.

The responsibilities are what the object must be able to do and what the object
must know. These responsibilities are written down on the front of the card under
the heading “Responsibilities:”. However, the previous CRH card represents design
decisions yet to be made. It is only a preview of what it might look like.

Some CRH card practitioners use the backs of the CRH cards for recording
different types of information. Chelsea suggests the team write down the class name
along with its major responsibility on the back of the 3-by-5-inch index cards. Here
is the result, using the design shown earlier.

Ficure 12.6
jukeBox: The object in the system cD: Something that holds many tracks
responsible for coordinating activities
student: Someone who can make cdPlayer: Plays any track
selections
track: Stores information about one track studentCollection: Stores all
(title, play length) students who could potentially play songs
L | cardReader: Reads information from a L | cdCollection: Stores all CDs with
magnetic student ID card to identify the tracks that could be played
user

Each team member takes one or two of these CRH cards to “become” the class.
The holder of each card will play the role of that class.

12.2.2 Role Playing

Each team member has now assumed the role of at least one class (one team mem-
ber could role play several classes if necessary). Chelsea suggests that the team role
play a scenario to see how one instance of a class could interact with instances of
other classes. Jessica wants to know, “What is a scenario?” Chelsea responds, “A

451

CHAPTER TWELVE

452

OBJECT-ORIENTED SOFTWARE DEVELOPMENT: ANALYSIS AND DESIGN

scenario is the answer to the question, What happens when ... ?” Steve suggests the
team role play the following scenario.

12.2.2.1 Scenario 1: “What happens when a student wants to select a track?”

The first thing to do is decide which object begins the scenario. Each team member
looks on his or her CRH card to see who will start. The team member playing the
role of jukeBox states, “I'm playing the role of the object responsible for coordinating
activities, so I guess I'll start.”

jukeBox: I'm playing the role of the jukebox so I'll start this scenario. Hey cardreader,
has a user swiped a card?

cardReader: No.
jukeBox: Hmmm. Okay, cardReader, has a student swiped a card?
cardReader: No.

jukeBox: Hey, how often do I have to do this? I suppose I'll have to wait for a user.

The object expert suggests that Jason (jukeBox) add awaitForUser responsibility to
his card.

jukeBox: Okay, 'm waiting for a user. Waiting, waiting, waiting . . .

cardReader: Okay, jukeBox, a user just swiped a card. Here is all the information on
that magnetic strip ID card.

jukeBox: Thanks, cardreader, but I don’t know what to do with all of this stuff.
Which part of the input uniquely identifies the student?

The team wonders what information is recorded on a magnetic student identifi-
cation card. Is there a name, a student ID number, the amount of money left in the
student’s food service balance, an address? Since no one knows for sure, perhaps
cardReader could take on the responsibility for getting the unique student identifi-
cation number of the user holding the magnetic card just swiped.

cardReader: Okay, I'll add getStudentID to my list of responsibilities.

jukeBox: Thanks, cardReader. By the way, although I first believed you weren’t nec-
essary as a class, I do believe so now. You not only communicate with the physi-
cal card reader, you also have access to the entire student ID card so you can
return the information I seek—the student ID number. You just made my life

12.2 Rort Praving AND CRH CARD DEVELOPMENT

simpler. I don’t need to know what kind of physical card reader is out there, nor
do I have to know details such as the format of the magnetic card being swiped.
Now that I have the student ID number, I need to verify that the user can select
a song.

studentCollection: Well, since it is my responsibility to store the collection of stu-
dent objects, let me check to see if there is a student here with that ID. Yes, here
is the student object associated with the student ID number you passed to me.
I will add a responsibility to the front of my CRH card: getStudent.

jukeBox: Now that I know the user is valid, I suppose we should let the user select a
song, I mean track. Okay, whose responsibility is it to maintain the list of all
tracks on all CDs?

cdCollection: That’s me! What do you want?
jukeBox: I'd like the collection of all CDs.
cdCollection: Well, all you have to do is ask. I've been here all along.

jukeBox: Okay, I now know I always have access to cdCollection. What do I do with
you now?

There is a pause. No one knows. Should jukeBox display the CD choices to the
user and then, based on the CD selection, show the tracks? This would mean that
jukeBox will have much more to do (Jason and Jessica are thinking about all those
loops). Chelsea suggests that it seems like some other object should be responsible
for getting this information from the user. jukeBox coordinates activities; it can del-
egate authority to other classes. It does not have to do everything.

Chelsea points out that there are many object-oriented designers who use the
following design heuristic when confronted with similar design decisions:

OBJECT-ORIENTED DESIGN HEURISTIC 12.3

Avoid all-powerful (omnipotent) classes.

It is undesirable to have a class that does everything, or even too much. The by-
product of assigning too much responsibility is a complicated class that can be diffi-
cult to implement and maintain after deployment into the student center. Chelsea
describes another related object-oriented design heuristic that helps software devel-
opers attain well-designed object-oriented systems:

453

CHAPTER TWELVE

454

OBJECT-ORIENTED SOFTWARE DEVELOPMENT: ANALYSIS AND DESIGN

OBJECT-ORIENTED DESIGN HEURISTIC 12.4 (RIEL’S 3.1)

Distribute system intelligence among the classes as evenly as possible. The top-level

classes in a design should share the work uniformly.

Chelsea encourages the team to try to evenly distribute the work amongst the
analysis classes that are currently being role played. The benefit is a more easily
understood system. The design will be more easily communicated to the client and
the programmers that will implement the design. It will be more easily understood
when the inevitable bugs have to be fixed or enhancements are to be made.

jukeBox: Let me summarize: I won’t try to get the user’s track selection. I know that
I will somehow have access to the CD collection, but what has to happen now?
What should I do next to get the track?

Chelsea offers a suggestion: “A good object-oriented system has objects that delegate
responsibilities to other objects. This is not about producing lazy objects. This is
about understandable systems. Some other object could get the user selection.” “But
who?” asks Jason.

Chelsea proposes that to keep things simple, it might be appropriate to add a
new class to interface with the user. The major responsibility would be getTrack.
The team’s computer engineer, Matt, and the computer science major Charlie, who
are now quite familiar with interactive input and output, suggest that with a new
trackSelector class, jukeBox need not worry about how to get output to and input
from the user. It could come from the keyboard; from a touch screen; or through a
graphical user interface for the Mac, a graphical user interface for a WinTel ma-
chine, a graphical user interface for a Unix or Linux system, or whatever. The jukeBox
role player suggests backing up one step and finishing the current scenario with a
new trackSelector class, which has the major responsibility of communicating with
the user. trackSelector will get the user’s selection.

12.2.2.2 trackSelector, a new class added to get student selections

jukeBox: Okay, I now have access to the collection of all CDs. I'll pass it to
trackSelector. You tell me what track the user wants to hear.

trackSelector: Okay, I'll offer the options to the user and let him or her decide. Hey,
what options are there? I'm in control here, but I still don’t know how to get the
user’s selection.

12.2 Rort Praving AND CRH CARD DEVELOPMENT

cdCollection:Ihold the collection of CDs, so it seems like I should have some mecha-
nism to allow access to the CDs and all tracks on the CDs. Then you could look
at every CD in my collection and show the artist and title, perhaps by artist
name in alphabetic order. Once the CD is selected, you could iterate over all the
tracks available on that CD.

cD: I think I can help. Those knowledge responsibilities are listed on my CRH card
(know all tracks). However, I don’t know how to reveal individual tracks. I will
add that responsibility: “allow references to individual tracks.”

“Yes, you could have a vector of tracks that are accessible with the subscript
operator,” asserts Jason. Chelsea warns Jason to avoid tying in implementation de-
tails at this point. He can decide later. For now it seems cdCollection must allow
references to individual CDs and each CD must allow references to individual tracks.
“Do you both have that responsibility on your individual CRH cards?” she asks.

cdCollection: No, I'll add the responsibility of allowing access to all CDs now. In
fact, it seems like I will have to be able to add new CDs and delete others as the
music in the physical CD jukebox changes. So I'll also add addcD and removeCD.

cD: I didn’t list those responsibilities either, but I'll add them now. And in addition to
knowing my play time, I could also be responsible for knowing my CD number
and my track locations. This is all cdP1ayer would need to know in order to play
any track.

trackSelector: Look, you guys, if you are done for now, I'd like to just say that I can
get the track selected by the user. Let’s continue the scenario. Okay, jukeBox,
here is the track selected by the user. I'll write the responsibility getTrack on
my CRH card.

jukeBox: Thanks, trackSelector. Now I need to determine whether or not the cur-
rent student can play the selected track. Who is responsible for knowing the
play time of any track?

track: It seems like I should be responsible for knowing the duration of my track.
For example, it might take 3 minutes and 34 seconds to be completely played.
I'll add the operation “know play time” to my CRH card along with the respon-
sibility to know the CD number and what track number I am.

“Whoooooaaaaa, this is confusing!” proclaims Blaine, the domain expert. “Why
does jukeBox need to know the duration of the track?” Jessica suggests that some

455

CHAPTER TWELVE

456

OBJECT-ORIENTED SOFTWARE DEVELOPMENT: ANALYSIS AND DESIGN

object must be made responsible for determining whether or not this particular
student can play this particular song. Chelsea suggests that the team continue role
playing until this scenario reaches some logical conclusion.

jukeBox: Okay, now I should check to make sure the student is able to select this
track before telling cdPlayer to play it. I seem to remember I cannot simply
play a track without checking on a few things. I know the current student and
the selected track. What do I do now?

The team has stalled. They wonder what must be done next. Why did jukeBox
need to know the student in the first place? Misty reminds the team that jukebox
play time is reserved for this school’s valid students only. Therefore jukeBox had to
ask studentCollection to validate the user first. Well actually, studentCollection
has that responsibility. The verification was done earlier in this scenario (even if it
is not exactly clear yet how it was done). Additionally, as stated in the problem
statement, a student must have enough time credit, and may not play more than
two tracks on the same date. The role player of track has an idea. He suggests that
the jukebox ask the track for its play time.

12.2.2.3 Alternative 1

jukeBox: So tell me, track, how many minutes and seconds do you require to be
played?

track: 3 minutes and 34 seconds.
jukeBox: student, do you have at least 3 minutes and 34 seconds credit?

student: I'll be responsible for maintaining my remaining time credit (he adds this
to his CRH card), so I can answer that. Yes, I have enough credit.

jukeBox: student, have you played fewer than two tracks on this date?
student: Yes, I have not played two tracks today.
jukeBox: Okay, now we can play the track. Here it is, cdPlayer.

cdPlayer: Okay, jukeBox, I would be willing to tell the physical CD player to play
this track. Actually, I have no idea how I am going to do that, but I'll write a
playTrack responsibility on my CRH card for now as long as you send me the
track to be played during a playTrack message.

This scenario has now reached a logical conclusion. However, the team feels
that jukeBox already has enough responsibilities. “Why should I have to figure out
if the student can play the selected track?” asks the member role playing jukeBox.

12.2 Rort Praving AND CRH CARD DEVELOPMENT

Chelsea suggests that they follow their instincts and try to distribute system intel-
ligence as evenly as possible—a principle of good object-oriented design. Another
heuristic for good design is avoid all-powerful classes. This suggests that in a good
design, jukeBox might not be the best class for determining whether or not a stu-
dent can play a track. Perhaps some other class should have that responsibility. The
person playing student thinks it is appropriate to let the student object be respon-
sible for figuring out if its human equivalent is allowed to play the selected track.

12.2.2.4 Alternative 2
jukeBox: student, can you play this track?

student: I feel as though I should be responsible for maintaining my own time credit.
It seems appropriate that I should also know how many tracks I've played to-
day. So I should be able to do some simple calculations to give you the answer
you seek. Yes, jukeBox, I can play the track you sent me. I'll add these responsi-
bilities to my CRH card:
#* know how much time credit I have left
#* know how many tracks I've played on this date
* respond to a message like student::canSelect (currentTrack)

The team wonders which alternative is better. One way to assess the design is
to ask what feels better. Alternative 2 feels better somehow. Wouldn't it be nice if
there were some object-oriented design heuristics to make us feel better about feel-
ing better?

Well, it turns out that the first alternative has a higher degree of coupling,
which means more messages are sent from jukeBox to student. There were two
different messages versus the single message of the second alternative (canSelect).
Chelsea adds this heuristic to the repertoire:

OBJECT-ORIENTED DESIGN HEURISTIC 12.5

Minimize the number of messages between a class and its helper.

Additionally, the second alternative has better cohesion. This means that the two
knowledge responsibilities necessary to answer a canSelect message are closely
related.

THE RESPONSIBILITIES OF EACH student

1. know how much time credit I have

2. know how many tracks I've played on this date

457

CHAPTER TWELVE

458

OBJECT-ORIENTED SOFTWARE DEVELOPMENT: ANALYSIS AND DESIGN

Additionally, the first alternative requires jukeBox to know about the internal
state of the track and the internal state of student. This is a violation of Object-
Oriented Design Heuristic 6.1, “All data should be hidden within its class.” In con-
clusion, the second alternative delegates responsibility to the more appropriate class.

Chelsea (the object expert) verifies that the team member holding the student
card should add canSelect as a responsibility. The team feels this scenario has
reached its logical conclusion.

Self-Check

12-5 Summarize the algorithm that lets one user make one selection.
You may send any message that you desire to any object you desire.
Use any of the objects shown next as if the classes were already
implemented. Add any message you like.

You are currently designing. Pretend you will be passing off your
CRH cards and the entire algorithm to another programmer who
will have to make it all work according to your design.

student currentStudent;

track currentSelection;

cardReader myCardReader;

cdCollection myCdCollection;
studentCollection myStudentCollection;
trackSelector myTrackSelector;
cdPlayer myCdPlayer;

There are many other possible scenarios. For instance, what if the student does
not exist in studentCollection? What should happen? Or what if a student does
not have enough credit or has already selected two tracks?

12.2.2.5 Scenario 2: “What happens when a student who has already played two tracks
on this date tries to select a third track?”

jukeBox: Let us skip up to the point where I send a canSelect message.
student: No, I can’t select a track.

jukeBox: I could simply send an appropriate message to the user.

So far, so good. However, Steve, who is holding the cdPlayer card, wonders when
and how a track ever actually gets played by the physical CD player so it can be
enjoyed over the stereo system. It seems as if cdPlayer needs some stimulus. The
team has questions. Which class is responsible for sending the message that plays a

12.2 Rort Praving AND CRH CARD DEVELOPMENT

track? And what happens when another track is already playing? If there are many
tracks to be played, when and how will more than one track be played? Will the CD
player be able to tell anyone when a track has finished? Misty asks, “Who is role
playing the play list?” The team members check the lists of classes and to their
dismay, discover that there is no playList class.

Chelsea comforts the team. “This often happens. We are trying to discover classes
that represent an abstract view of the system. It is not unusual to discover useful
abstractions at any point of software development. So feel free to add a playList
class now.” playList should maintain the list of tracks selected by users.

12.2.2.6 playList, a new class to maintain track selections in order

Charlie wants to know if playList should be a data member of the cdPlayer class?
Don’t CD players maintain their own play lists? Yes they do. Steve, who is role play-
ing cdPlayer suggests that he contain playList as a data member.

The object expert suggests that this decision could be made at a later meeting.
However, the team wants to force the issue now, as it is difficult to arrange a meeting
time that all members can attend.

Jessica and Jason then lead a conversation suggesting that the overall system
would be easier to implement if the physical CD player maintained playList. First
of all, there is reuse of existing software (play lists) and hardware (CD selection
mechanism, a clock, and hardware to read digital songs and convert them to real
sound). Modern CD players not only maintain their own play lists, they also know
precisely when to play the next track! If the system under development has to send
playTrack messages at the appropriate time, jukeBox or somebody else would also
have to maintain the time remaining on the currently played track—independent of
the physical CD player. And how long does it take to load up CD #199 after CD #3
has just been played—3 seconds, 10 seconds, 5 seconds, 1 minute? When should
jukeBox ask cdPlayer to play the next track? Will a track be cut short? Will there be
unnecessary delays?

Chelsea begins a discourse that addresses a recurring design decision with sys-
tems that have concurrent (simultaneous) processes. Since the primary responsibil-
ity of jukeBox is to coordinate activities, jukeBox could control when the next track
will be played. This could happen by using what is known as apolling design. jukeBox
would go out and frequently poll (ask) cdPlayer if it is playing a CD. If cdplayer
replies “Yes,” jukeBox can go off and do other things. If cdP1ayer replies “No, I am
not playing a track,” jukeBox could ask playList for the next track and then send a
message to cdPlayer to play it. In this case jukeBox continuously pollscdplayer. In

459

CHAPTER TWELVE

460

OBJECT-ORIENTED SOFTWARE DEVELOPMENT: ANALYSIS AND DESIGN

fact, this sounds a lot like waitForUser, a responsibility accomplished by polling—
continuously asking cardReader if a card has been swiped.

It is also possible to have an interrupt-driven design. Each time cdPlayer fin-
ishes playing a track, cdPlayer asks jukeBox for the next track to play. In this case,
cdPlayer is said to interrupt jukeBox. The jukeBox accommodates by getting the
next track as soon as possible.

Matt reminds the team they have two computers. One is the PC that interacts
with users as it maintains studentCollection and cdCollection. The second is a
processor inside the physical CD player. Why can’t we reuse the existing software
and hardware of the CD player? Matt goes on to tell the team that this is easily done
by setting the CD player to its internal program mode. His CD player at home can
queue up to 99 different tracks at any one time. Charlie says he could deal with
either a polled design, an interrupt-driven design, or this third option of having
concurrent processes perform their responsibilities simultaneously on two separate
processors.

Chelsea repeats, “Now that would be reuse!” She suggests that the team role
play a scenario assuming playList resides in the physical CD player and follow a
concurrent process design. And even though playList is already implemented in
the physical CD player with a separate microprocessor, it might be useful to keep
playList as a class during role playing. “It really feels important,” suggests Blaine.

Chelsea asks the team to simplify the analysis. “All we need to do is send a
playTrack message to cdPlayer. The cdPlayer class will be responsible for commu-
nicating with the physical CD player.” The CD player will continuously play songs
in a first-to-last order all by itself while jukeBox is busy getting new track selections
from users. In fact, if the computer fails, the physical CD player could play out the
entire playList.

12.2.2.7 Scenario 3: “What happens when a student is willing and able to play a track,
but several tracks are waiting to be played?”

Chelsea tells trackSelector to pick up a scenario that already has a valid student.

jukeBox: trackSelector, here is cdCollection. Please return the user’s musical
selection.

trackSelector: Okay, I now have the cdCollection, so user, please select a track.
The user selects the “I'm the Cat” track from Jackson Browne’s CD titled Look-
ing East. trackSelector returns this selected track, which jukeBox knows as
currentSelection—an instance of the track class.

12.2 Rort Praving AND CRH CARD DEVELOPMENT

jukeBox: student, can you play the currentSelection?
student: Yes.
jukeBox: cdPlayer, please playTrack(currentSelection).

cdPlayer: Okay, I got it. However, a track is currently playing and there are other
tracks to play before I can play your selection. What do I do now?

playList: Hey, that’s my job. I'll add the currentSelection at the end of the queue
(waiting line) of tracks to be played, if that’s what everyone thinks is fair.

Chelsea asks Blaine, the customer and domain expert, if this is the proper
policy—first come, first served. Blaine retorts, “Yes, absolutely.” Charlie, who has a
part-time job as a network administrator at Lucent Technologies, pronounces that
such a fair policy is easily enforced as a first-in-first-out (FIFO) waiting line—what
computer scientists call a queue. Blaine asks Charlie how one can set up a waiting
line inside a computer. Charlie says a queue is like a vector except that new things
can be added only at the end. Things can only be removed from the front. Blaine
reminds Charlie that he knows a lot about student policies but very little about
vectors and queues. Chelsea reminds Charlie to avoid discussing implementation
details during analysis—even if he knows about an existing queue class that can
easily “queue up” tracks.

playList: Okay, I'll write these responsibilities on my CRH card: queueUpTrack and
getNextTrackToPlay, even if | already exist in the CD player.

12.2.2.8 Scenario 4: “What happens when a student ID card is not found in
studentCollection?”

jukeBox: Okay, 'm waiting for a user. Waiting, waiting, waiting . ..
cardReader: Okay, jukeBox, a user just swiped a card. Here is the student ID.

jukeBox: Thanks, cardReader. Now that I have the student ID, I need to verify if the
user is valid. Hey, you know what? I am going to give a name to what I am doing.
It seems like I am performing an operation that gets the student ID, finds the
student, asks trackSelector for the student’s selection, and so on. I’'m going to
summarize this algorithm and write it on my card as processOneUser.

studentCollection: Well, since it is my responsibility to store the collection of
student objects, let me check to see if there is a student here with that ID. No,
we have no student with that ID. What do we do now?

461

CHAPTER TWELVE

462

OBJECT-ORIENTED SOFTWARE DEVELOPMENT: ANALYSIS AND DESIGN

jukeBox: I'll just tell the alleged user that it’s a no-go.

“Whoooooaaa,” groans Jason. “A student with a valid student ID is a valid stu-
dent. Let ’em in.” Jessica supports Jason’s suggestion by suggesting that “valid stu-
dent” means something different each semester. Some students drop out in the middle
of a term. New students come in at the beginning of a term. Jessica expresses con-
cern about maintaining an accurate list of valid students—would we have to access
the registrar’s database of students? Blaine suggests that the cashless jukebox isn’t
a mission-critical system. Nor could anyone profit from its abuse. So even if a few
“invalid” students get in, so what? The team members unanimously agree that a
nonexistent student with a valid ID card should have an account created automati-
cally. “And how much time credit do we give that new student account?” questions
Matt. “1,500 minutes, of course,” replies Misty.

jukeBox: Let me change my previous action so the new student is added to the new
collection. Who should have that responsibility?

studentCollection: Why, me of course. Give me the student ID number from the
magnetic ID card, and [will add a new student. I'll write the action responsibil-
ity addstudent on my CRH card. So jukeBox will not have to worry about the
student returned. It may be someone who had been in the system, or it may be
someone who was just added.

Self-Check

12-6 Play out the following scenarios by writing the class name and
narrative of each until it has reached its logical conclusion:

-2 What happens when a student swipes her card for the first
time on a given date and wants to play two different songs?

-b What happens when a student has no more time credit left, but
wants to play a song?

-c What happens when the Student Affairs office wants to remove
a CD from the jukebox?

-d What happens when the Student Affairs office wants to add a
new CD to the jukebox?

- What happens when cdPlayer receives a playSong message
and the physical CD player is turned off or malfunctioning?

12.2 Rort Praving AND CRH CARD DEVELOPMENT

12-7 List several college-library scenarios that should be played out by a
team.

12-8 Script a college-library scenario that describes what happens when
a user wants to check out a book.

12-9 Script a college-library scenario that describes what happens when
a user wants to return a book that is not late.

12.2.3 Why CRH Cards?

After role playing, discussion, arguments, laughter, and changed minds, the design
is captured as a set of classes that model a solution. Class names and responsibili-
ties have been recorded on CRH cards as the team role played the scenarios. CRH
cards help the problem-solving and system-building processes in many ways. Rebecca
Wirfs-Brock writes [Wirfs-Brock 90]:

We have found that index cards work well because they are com-
pact, easy to manipulate, and easy to modify or discard. Because
you didn’t make them, they don’t feel valuable to you. If the class
turns out to be spurious, you can toss the card aside with few re-
grets. . . . If you discover you have erroneously discarded a class
card, it is simple to retrieve it, or make a new one.

This is but one example of the many dynamics of CRH card use in software that go
beyond the scope of this textbook. The previous jukebox discourse was an attempt to
represent real-world object-oriented analysis and design.

In actuality, during October and November 1997, six students role played these
and other jukebox scenarios. Some of the issues that arose are left as analysis and
design exercises. For example, the team members strongly felt that no track should
be played within the same hour. The author (acting as the customer and domain
expert Blaine) agreed this would be a good enhancement, but it would be a change
dealt with as an enhancement later. It is an interesting design decision to make.
There are several possibilities.

One of the benefits of having a team consisting of designers and customers is
the opportunity for everyone to develop an understanding of the system in common
terminology. Sometimes customers haven’t asked for what they really want. Experi-
enced teams familiar with customer needs can actually help customers sharpen
their requirements. The team can also make suggestions like this: “Please don’t let

463

CHAPTER TWELVE ~ OBJECT-ORIENTED SOFTWARE DEVELOPMENT: ANALYSIS AND DESIGN

the same track play over and over again. I couldn’t stand that. It happened too much
in high school. We had to turn the jukebox off.” Limits of two tracks a day could
prevent a lot of complaints.

12.2.4 Responsibilities and Helpers

The following summary of responsibilities and helpers is the result of the preceding
CRH card development with the team role playing individual classes. These will be
used in the next chapter to document the class names, action responsibilities, knowl-
edge responsibilities, and collaboration for creating the class definitions. Knowledge
responsibilities could become data members. Action responsibilities could become
member functions. A helper might become a message send, a data member (contain-
ment relationship), an argument in a message, or a return value from a message.
You will see more about these relationships and class definition design in Chapter 13.

Ficure 12.7. Major classes with responsibilities and helpers

Class: jukeBox Helpers: Class: cardReader
Responsibilities: cdPlayer Responsibilities: Helpers:
know current track trackSelector getStudentID physical card reader, which
know current student student in turn collaborates with
waitForUser cardReader the magnetic student ID card
processOneUser studentCollection

cdCollection
Class: student Class: studentCollection
Responsibilities: Helpers: Responsibilities: Helpers:
know remaining credit date know all students student
know how many songs played today getStudent
canSelect addStudent

464

12.2 Rort Praving AND CRH CARD DEVELOPMENT

Class: cD Class: cdCollection
Responsibilities: Helpers: Responsibilities: Helpers:
know tracks know all CDs cD
know CD title and artist name allow references to individual CDs
allow references to individual tracks addCD
know play time removeCD
Class: trackSelector Class: track
Responsibilities: Helpers: Responsibilities: Helpers:
track getTrack(int) the user know play time
track know physical location in the CD player
cD (CD number, track number)
cdCollection
Class: cdPlayer Class: playlList
Responsibilities: Helpers: Responsibilities: Helpers:
playTrack the physical CD player maintain list of selected tracks track
playList getNextTrackToPlay queue
CD queueUpTrack

12.3 An Uninterrupted Scenario

Chelsea congratulates the team. The responsibilities seem to be distributed over a
reasonable number of classes. If you consider that cdPlayer and playList are al-
ready implemented, the team has to consider and implement only eight classes at
once.

465

CHAPTER TWELVE

466

OBJECT-ORIENTED SOFTWARE DEVELOPMENT: ANALYSIS AND DESIGN

Steve complains that he is still a bit confused. Each time a scenario began, it
was not completed without some interruption. Chelsea had a lot to say about object-
oriented analysis and design. Blaine sometimes had to address policy issues such as
the play policy. Charlie just seemed to say too much about implementation. Addi-
tionally, it seemed that while the team members were trying to understand the
problem, they also had to stop and make design decisions; should it be a polled
design, an interrupt-driven design, or a concurrent design?

Jessica and Jason admit to some confusion. Jessica proposes that the team role
play a scenario without interruption. This may be a repeat of what has been done,
but it might help us understand the system better—a summary of sorts. Chelsea
believes this is a good idea. She suggests the team hold the same CRH cards and
role play a scenario.

12.3.1 Summary Scenario: “What happens when a student
without an account wants to select a track?”

jukebox: I'll start the scenario again. 'm waitingForUser, so cardReader, please
getStudentID.

cardReader: No one has swiped their card.

jukeBox: Okay, cardReader, I'll ask again. Please getStudentID.

cardReader: No one has swiped their card.

jukeBox: Okay, 'm waiting for a user. Waiting, waiting, waiting . . .

cardReader: Okay, jukeBox, a user just swiped a card. Here is the student ID: 1234.
jukeBox: studentCollection, please getStudent with ID 1234.

studentCollection: Well, there is no such student, so I'll create a new student ac-
count and the student will have a time credit of 1,500 minutes and no songs
played on this date. I suspect this would be a default student object.

jukeBox: Thanks, studentCollection, for the currentStudent. trackSelector, 'm
giving you cdCollection. Would you please give me the user’s currentSelection?

trackSelector: Okay, I'll use cdCollection to show all the CDs and tracks to the
user. The user will have to select the track. Got it.

12.3 AN UNINTERRUPTED SCENARIO

jukeBox: Okay, I have the currentSelection. student, can you select a song?
student: Yes, I can select a song.

jukeBox: Now, cdPlayer, please playTrack(currentSelection).

cdPlayer: playlList, please add this track to the music we’ll eventually play.

playList: Okay, I can queue it up, but if you aren’t currently playing anything, why
don’t you play it now?

cdPlayer: Well, I am playing some good stuff now, so please queue it up.
playList: Okay, I'll add it.

jukeBox: Actually, I don’t need to worry about what you guys did, I'm already wait-
ing for another user.

Chelsea suggests that this scenario has reached its logical conclusion. jukeBox
is waiting for another user. The CD player is playing the selected tracks in an FIFO
order from playList.

Jessica, who has been role playing cdCollection, observes that she played no
role in the scenarios. “You sent me to trackSelector, but I was never asked for
anything. Why did trackSelector need me?” Chelsea agrees that something is amiss.
It appears thatcdCollection must make individual CDs available totrackSelector
in some reasonable order. “What about artist names alphabetically?” asks Jessica.
Blaine replies, “Seems reasonable. It’s probably easier for students to pick an artist
first, then a CD by that artist, then a track from that CD.”

Jessica recalls that vectors allow access to individual elements in the container
of objects. So it seems reasonable that cdCollection must also allow access to indi-
vidual CDs from first to last. Charlie says he can handle it. Don’t worry about it.
Chelsea thanks Charlie.

Now everything is wonderful, except . . . What happens if the same user wants
to play a second and then a third track? A new account will not be created this time,
but somehow student must know if it canSelect. This new account should not be
able to select a third track. No student should have unlimited time credit. In other
words, student must be modified to reflect the fact that it selected a track and the
CD player played the music. When should student updates occur?

467

CHAPTER TWELVE OBJECT-ORIENTED SOFTWARE DEVELOPMENT: ANALYSIS AND DESIGN

Chelsea, who was role playing student, suggests that she could have updated
herself when asked the canSelect question. She had the currentSelection, so she
could have deducted the time it takes to play that track during canSelect. She could
also have recorded today’s date. When a second track was selected, she could have
modified herself again in the same way. When the third canSelect message was
sent to student, student could simply reply, “No can do. And by the way, I won’t
deduct any time, nor will I record the fact that I selected a third song on today’s
date.”

The team can live with this, except Matt wonders how studentCollection will
know if one of its students has been modified. Charlie says studentCollection could
remove the old student and add the modified student. Blaine doesn’t like that sug-
gestion. Charlie says, “Okay, simply return a reference to the student so any change
to student by jukeBox will also update the student in the studentCollection.”
Blaine bemoans, “What’s a reference?” Charlie stops before he says a word. Instead,
he quietly contemplates how to change students and maintain them so they are the
same later in the day and even later in the term or in a student’s career. Charlie has
completed two computer science courses and he knows that references and files will
prove useful helper classes.

The team meeting is over after Chelsea sets up a meeting with Charlie and
Matt. Stay tuned for the class definition design and member function implementa-
tions (see Chapter 13).

Chapter Summary

Object-oriented software development begins by identifying the key abstractions—
classes—that potentially model a solution. Software designers assign responsibili-
ties to the appropriate classes.

#* Analysis and design decisions can be documented as Component/Responsibility/
Helper (CRH) cards. Each CRH card begins as a blank 3-by-5-inch index card (or it
could be 4 by 6 inches) with a class name and major responsibilities written on the
back.

#* Collaborative design and role playing enhance the object-oriented development pro-
cess. Possible analysis classes arise not only from the problem specification itself
and domain expertise, but also from the words that are spoken as teams analyze
problems.

Team members assume the roles of these analysis classes, play out scenarios (what
would happen when . . .), and establish relationships between classes. During role

468

playing, team members establish more detailed responsibilities—what an object
should know and what it should be able to do—while recording them on the CRH

cards.

Exercises

1

The students are complaining. The same song plays again and again. One person
plays it twice and then has a friend play it twice. The Student Affairs office asks
you to modify the jukebox so it will not play any song that has been played in the
previous 60 minutes. The original team has graduated. You have to do it by your-
self. List all classes that must be modified. What changes must be made to each?

What changes would need to be made to the jukebox design in order to maintain
the CD collection in this way: The jukebox has been running for a while. The
Student Affairs office wants to replace the 10 least frequently played CDs with a
fresh 10. The original team has graduated. You have to do it by yourself. List all
classes that must be modified. What changes must be made to each?

After the jukebox has been running for a while, students begin to complain be-
cause they can no longer select songs due to the fact that that they are out of
time. The Student Affairs office asks you to modify the jukebox so users can play
up to 3,000 minutes of music. The original team has graduated. You have to do it
by yourself. List all classes that must be modified. What changes must be made
to each?

After the jukebox has been running for a while more, students begin to complain
because they can no longer select songs due to the fact that that they are running
out of time again. The Student Affairs office asks you to modify the jukebox so
there is no time restriction. The original team has graduated. You have to do it by
yourself. List all classes that must be modified. What changes must be made to
each?

Students want to be able to play entire CDs on the weekends. The Student Af-
fairs office asks you to modify the jukebox so each student can play one entire CD
on any given date. The original team has graduated. You have to do it by yourself.
List all classes that must be modified. What changes must be made to each?

EXERCISES

469

CHAPTER TWELVE

470

OBJECT-ORIENTED SOFTWARE DEVELOPMENT: ANALYSIS AND DESIGN

Analysis Tips

1.

Model the real world when possible.

Meaningful well-named abstractions can make the system design easier to under-
stand.

Anthropomorphize.

Don’t be afraid to give human characteristics to your objects. Ask these questions
often:

#* What should an instance of this class be able to do?

#* What should an instance of this class know?

On your CRH cards, write action responsibilities as if they
were C+ + identifiers (no spaces).

This will help as you move on to designing class definitions. Conversely, write knowl-
edge responsibilities like this:

#* know all CDs

#* know all tracks

* know play time

Do not procrastinate.

Write down the responsibilities as soon as you realize them during role playing.
Early bouts of laziness can end up in frustration later.

Distinguish objects that are outside of the system
under development.

For example, the jukebox will communicate with the user. The jukebox will read the
student ID card. However, both the user and the magnetic ID card are outside of the
system.

The user is often confused as being a key abstraction to
be modeled.

The user is important. However, there is usually some state object that models the
real-world user. Remember that there is a physical user that selects songs, but there

10.

11.

Anarysis Tips

is also a software equivalent called student that knows how many songs the soft-
ware equivalent has played today.

Definitely draw a picture of the major classes.

Make the classes rectangular boxes with the class name and the major responsibil-
ity (10 words or less). The picture should have arrows from the sender of a message
to the receiver of that message (see the jukeBox picture).

Helpers usually represent a one-way relationship.

If class A asks class B for help, A is the sender, B is the helper. Write down that
responsibility on B’s card. jukeBox asked a helper named studentCollection to
getStudent. getStudent should be on the studentCollection card.

It is not a good idea to ask the physical user if he or she can
select.

However, it is perfectly okay to ask the software object. The physical student might
say, “Sure I can play 100 songs today.” Assume the programmer will not let the user’s
software equivalent lie. Besides, the user is not part of the system.

The first round of scenarios will often be interrupted by
discussions.

Interruptions are okay. This is called brainstorming. Five heads are better than one.
Genius is more easily accomplished with more than one person. At some point, have
your team play out a familiar scenario without interruption. You will see the objects
more clearly and understand their responsibilities.

The jukebox and the projects at the end of this chapter are
relatively large systems.

They certainly do more than convert from Fahrenheit to Celsius. If you don’t under-
stand jukeBox, don’t worry. The best way to understand it is to do an analysis with
a team. This could take hours. On more complex systems, this could take months.
The projects of this chapter are less complex. However, they are complex enough to
benefit from an object-oriented approach to software development.

471

CHAPTER TWELVE

472

12.

OBJECT-ORIENTED SOFTWARE DEVELOPMENT: ANALYSIS AND DESIGN

The jukebox has key abstractions that set a pattern for the
analysis projects coming up at the end of this chapter.

As you perform your own analysis and CRH card development in a team project

(12A, 12B, 12C, 12D) look for the following major classes (the analysis projects typi-

cally have five, six, or seven classes). Like the jukebox, they include

aclass that coordinates the major activities (jukeBox here)

#* acollection of objects (studentCollection and cdCollection here)

state objects (student, track, and CD here) stored in a container class

#* one or more classes that model something in the real world (student, cardReader,
and cdPlayer)

Object-Oriented Analysis/Design Projects

Each of the following analysis projects assumes you are using a team approach involving

activities like those described in this chapter. Team size should be two, three, four, or five

students.

1.

Once you have a team, pick a project you want to do. Choose from this list:
Bank Teller (12A)

Voice Mail System (12B)

Video Rental Store (12C)

Checkbook (12D)

make one up

Next, analyze the problem to establish a reasonable set of classes that model a
solution. Draw the classes on a piece of paper. Make sure each class has a name
and a major responsibility assigned to it.

For each useful class, write the name of the class and its major responsibility on
the back of a 3-by-5-inch index card (or an 8%-by-11-inch piece of paper if you
don’t have index cards). On the front, list the class, the more finely detailed re-
sponsibilities, and any helpers the class uses to accomplish its task.

Run through scenarios that you invent. Using a pencil, write down responsibili-
ties as they crop up. Remember, the class may have action responsibilities, knowl-
edge responsibilities, or both. Also write down any helpers that exist. If you ask
another object for help, that person (object) is a helper. You may erase, you may

OBJECT-ORIENTED ANALYSIS/DESIGN PROJECTS

cross off, or you may add responsibilities; in fact you may even tear up and recycle
that CRH card.

5. Role play as many scenarios as you can think of. Do them until you really under-
stand the system. The CRH cards should provide an accurate portrayal of the
responsibilities of each class.

Save your CRH cards. They will be used to help you design class definitions (Chapter 13).
Your project can be continued into the next chapter and on into complete implementation.

12A Bank Teller Application Adapted from Problem Solving
and Program Implementation [Mercer 91]

First read the notes above. The bank teller application allows any bank customers access
to their own bank accounts through their customer numbers. Once a customer swipes the
bank card and enters the personal identification number (PIN), the user, with the help of
a teller, may complete any of the following transactions: withdraw money, deposit money,
and query account balance. Customers may also see their own transaction logs. The sys-
tem must maintain the correct balances for all accounts and also log each and every suc-
cessful transaction.

12B Voice Mail System Adapted from Mastering Object-
Oriented Design in C+ + [Horstmann 96]

First read the notes above. Simulate a voice mail system. The system has a collection of
mailboxes, each of which may be accessed by an extension number (3445, for instance). A
user may put a message into any mailbox, so anyone on the computer may type in a
mailbox number and then type in a message. Any user with a valid mailbox and the valid
password may do any of the following:

play back messages
* delete messages

#* change the greeting
#* change the password

An administrator is needed to activate new mailboxes and deactivate active mailboxes.
The administrator is a user with a “super password.”

473

CHAPTER TWELVE ~ OBJECT-ORIENTED SOFTWARE DEVELOPMENT: ANALYSIS AND DESIGN

474

12C Video Rental System from Data Structures via C+ +
[Berman 97]

First read the notes above. Build a software system to support the operation of a video
rental store. The system should automate the process of renting tapes and receiving re-
turned tapes, including the calculation and printing of customer bills, which may or may
not be done at the same time a tape is returned. The system must also give the clerk
access to information about the tapes, such as the number of copies on the shelf of any
given video owned by the store. The system must be able to add and remove customers and
tapes to and from the database. Each customer and each copy of each tape are associated
with a unique bar-coded label.

12D Checkbook Application Adapted from Using CRC Cards
[Wilkinson 95]

First read the notes above. Simulate an electronic checkbook. The checkbook manages a
limited set of entries: checks written and bank deposits. The checkbook must maintain the
proper balance and a record of all entries. The checkbook will be able to print a statement
of all activities. The user should be able to look up any check number individually and see
the amount and who the check was written to.

