
9/28/22

1

Objectives

•Java fundamentals: Standard Streams
•Creating our own classes
ØDocumentation: Javadocs
ØObject variables
ØObject initialization
ØOverloading
ØOverriding

Sept 28, 2022 Sprenkle - CSCI209 1

1

Review
• What is black-box programming?

Ø What are the benefits of black-box
programming?

Ø How does Java help enforce black-
box programming?

• What is the structure of a Java
class?
Ø What does it contain?
Ø What are the syntax rules?
Ø What are our conventions for

ordering the class?

• What is the Java equivalent of
self?

• What is our process for developing
a class?

Sept 28, 2022 Sprenkle - CSCI209 2

2

9/28/22

2

Access Modifier Example

•If a method is private to a class, other classes
cannot call that method.

Sept 28, 2022 Sprenkle - CSCI209 3

public static void main(String[] args) {
Chicken myChicken = new Chicken("Fred", 10, 2);
myChicken.feed();

// this will result in a compiler error:
myChicken.privateMethod();

}

NotAChickenClass.java

3

STANDARD ERROR

Sept 28, 2022 Sprenkle - CSCI209 4

4

9/28/22

3

Standard Streams

•Preconnected streams
ØStandard Out: stdout
ØStandard In: stdin
ØStandard Error: stderr
•For error messages and diagnostics
• In Java: System.err

Sept 28, 2022 Sprenkle - CSCI209 5

Start thinking about the benefits
of two output streams (out and err)

5

Standard Streams: Python!

•Documentation for Python’s print function:

•file parameter says where to direct output
ØDefault is to standard out

Sept 28, 2022 Sprenkle - CSCI209 6

print(...)
print(value, ..., sep=' ', end='\n’,
file=sys.stdout, flush=False)

How could you print to standard error?

6

9/28/22

4

Standard Streams: Python!

•Documentation for Python’s print function:

•file parameter says where to direct output

Sept 28, 2022 Sprenkle - CSCI209 7

print(...)
print(value, ..., sep=' ', end='\n’,
file=sys.stdout, flush=False)

import sys
print("Hello!")
print("Error Hello!", file=sys.stderr)

7

Redirecting Output

•Recall earlier this semester

ØRedirected stdout to debugged.out
Østderr would still go to terminal

•To redirect stderr to same file as well

Sept 28, 2022 Sprenkle - CSCI209 8

$ java Assign1 > debugged.out

$ java Assign1 1> debugged.out 2>&1

StandardStreamsExample.java

What is the benefit of having two output streams – output and error?

8

9/28/22

5

Benefits of Separate Output and Error Stream

•Separate output vs
error messages!
ØCan save outputs in two

different files, e.g., error.log vs output.log
ØIDEs (e.g., IDLE) differentiate between output (black

text) and error (red text)

Sept 28, 2022 Sprenkle - CSCI209 9

9

JAVADOCS

Sept 28, 2022 Sprenkle - CSCI209 10

10

9/28/22

6

JavaDocs for Methods

•Use format similar to class comments
•Use @param tag(s) to describe what method takes as

parameter(s)
• Use @return tag to describe what method returns

Sept 28, 2022 Sprenkle - CSCI209 11

/**
* Returns the string representation of the boolean argument.
*
* @param b - a boolean
* @return if the argument is true, a string equal to "true" is
* returned; otherwise, a string equal to "false" is
* returned.
*/

public static boolean valueOf(boolean b) {

From String class

11

JavaDocs for Methods: Chicken Example

Sept 28, 2022 Sprenkle - CSCI209 12

/**
* Sets the name of the chicken
*
* @param n the name of the chicken
*/

public void setName(String n) {

Generated on Web Page:

https://cs.wlu.edu/~sprenkles/cs209/javadocs/07-oo/Chicken.html

12

9/28/22

7

JavaDocs for Methods

•Expectation in CSCI209: All methods will have
JavaDoc comments
ØException: main method – sometimes covered by the
class’s JavaDoc but sometimes needs more explanation

Sept 28, 2022 Sprenkle - CSCI209 13

/**
* Returns the string representation of the boolean argument.
*
* @param b - a boolean
* @return if the argument is true, a string equal to "true" is
* returned; otherwise, a string equal to "false" is
* returned.
*/

public static boolean valueOf(boolean b) {

13

OBJECT REFERENCES

Sept 28, 2022 Sprenkle - CSCI209 14

14

9/28/22

8

Variables: Object References

•Variable of type Object (not a primitive type):
value is memory location

Sept 28, 2022 Sprenkle - CSCI209 15

Chicken
weight =

height =

name =

2.0

38

"Fred"
one =

Memory
Location

Chicken one = new Chicken("Fred", 38, 2.0);

1. Constructor creates the object in memory
2. The variable stores the object’s location in memory

15

Object References

•Variable of type Object: value is memory location

Sept 28, 2022 Sprenkle - CSCI209 16

one =

two =

Chicken one;
Chicken two;

Variables are declared (only).
There are no memory locations to
reference, so both one and two
are equal to null This is the case for objects.

Primitive types are not null.

16

9/28/22

9

Null Object Variables
•An object variable can be explicitly set to null
ØMeans that the object variable does not currently

refer to any object

•Can test if an object variable is set to null:

Sept 28, 2022 Sprenkle - CSCI209 17

Chicken chick = null;
… … …

if (chick == null) {
. . .

}

17

Recall This Error Message

Sept 28, 2022 Sprenkle - CSCI209 18

18

9/28/22

10

Multiple Object Variables

•More than one object variable can refer to the
same object

Sept 28, 2022 Sprenkle - CSCI209 19

Chicken

weight =

height =

name =

3.0

45

"Sallie Mae"

sal =

other =

Chicken sal = new Chicken("Sallie Mae");
Chicken other = sal;

19

Constructor Fun Facts

•A constructor can have zero, one, or multiple
parameters

•A constructor has no return value
•A constructor is always called with the new

operator

•A class can have more than one constructor
ØWhoa! Let that sink in for a bit

Sept 28, 2022 Sprenkle - CSCI209 20

20

9/28/22

11

Overloading

•Allowing > 1 constructor (or any method) with the
same name is called overloading
ØConstraint: Each of the methods that have the same name

or constructor must have different parameters
• “different” à Number and/or type

•Compiler handles overload resolution
ØProcess of matching a method call to the correct method

by matching the parameters
•Can’t overload functions in Python

Sept 28, 2022 Sprenkle - CSCI209 21

overload.py
Why isn’t overloading possible in Python?

21

Constructor Overloading

• Allowing > 1 constructor (or any method) with the same
name is called overloading
ØConstraint: Each of the methods that have the same name

must have different parameters so that compiler can
distinguish between them
• “different” à Number and/or type

• Compiler handles overload resolution
ØProcess of matching a method call to the correct method by

matching the parameters
• No function overloading in Python

Sept 28, 2022 Sprenkle - CSCI209 22

overload.py

Why isn’t overloading possible in Python?

22

9/28/22

12

Default Constructor

•Default constructor: constructor with no
parameters

•If class has no constructors, compiler provides a
default constructor (automatically)
ØSets all instance fields to their default values

•If a class has at least one constructor and no
default constructor, default constructor is NOT
provided

Sept 28, 2022 Sprenkle - CSCI209 23

23

Default Constructor

•Chicken class has one constructor:

Chicken(String name, int height, double weight)

➠No default constructor

Chicken chicken = new Chicken();

•Above code is a compiler error

Sept 28, 2022 Sprenkle - CSCI209 24

24

9/28/22

13

Constructors Calling Constructors

•Can call a constructor from another constructor
•To call another constructor of the same class,

the first statement of constructor must be
this(. . .);

Øthis refers to the object being constructed

Sept 28, 2022 Sprenkle - CSCI209 25

Why would you want to call another constructor?

25

Constructors Calling Constructors
•Why would a constructor call another constructor?

ØReduce code size, reduce duplicate code
•Ex: if Chicken’s name is not provided, use default

name

•Another example:

Sept 28, 2022 Sprenkle - CSCI209 26

Chicken(int height, double weight) {
this("Bubba", height, weight);

}

Chicken(int height, double weight) {
this();
this.height = height;
this.weight = weight;

}

Not in example
code online

26

9/28/22

14

Summary: Overloading
•Overloading is when you define multiple

constructors or multiple methods with the same
name

•Constraint: Each of the methods that have the
same name or the constructor must have
different parameters
Ø“different” à Number and/or type

•Compiler distinguishes between the
methods/constructor

Sept 28, 2022 Sprenkle - CSCI209 27

27

MORE ON OBJECT INITIALIZATION

Sept 28, 2022 Sprenkle - CSCI209 28

28

9/28/22

15

Default Object State Initialization

•If instance field is not explicitly set in constructor,
automatically set to default value
ØNumbers set to zero
ØBooleans set to false
ØObject variables set to null

•But, do not rely on defaults
ØCode is harder to understand

Sept 28, 2022 Sprenkle - CSCI209 29

Clean Code Recommendation:
Set all instance fields in the constructor(s)

(Aside: recall that local variables are
not assigned defaults)

29

Explicit Field Initialization

•If more than one constructor needs an instance
field set to same value, the field can be set
explicitly in the field declaration

Sept 28, 2022 Sprenkle - CSCI209 30

class Chicken {
private String name = "";
. . .

}

Set value here for
all constructors

30

9/28/22

16

Explicit Field Initialization

•Explicit field initialization happens before any
constructor runs

•A constructor can change an instance field that
was set explicitly

Sept 28, 2022 Sprenkle - CSCI209 32

class Chicken {
private String name = "";

public Chicken(String name, …) {
this.name = name;
…

}
…

Change explicit
field initialization

Explicit field initialization

32

final keyword

•Meaning when modifier a field: field cannot be
changed after object is constructed
•final instance fields must be set in the

constructor or in the field declaration

Sept 28, 2022 Sprenkle - CSCI209 33

33

private final String dbName = "invoices";
private final String id;
…
public MyObject(String id) {

this.id = id;
}

33

9/28/22

17

BASICS OF JAVA INHERITANCE

Sept 28, 2022 Sprenkle - CSCI209 34

34

Parent Class: Object
•Every class you create automatically inherits from

the Object class
ØSee Java API

• Examples of class hierarchies (from Java API):

Sept 28, 2022 Sprenkle - CSCI209 35

35

9/28/22

18

Overriding Methods
•You can override methods from parent classes
•Useful Object methods to override to customize

your class
ØString toString()
•Returns a string representation of the object
•Like Python’s __str__

Øboolean equals(Object o)
•Return true iff this object and o are equivalent
•Like Python’s __eq__

Sept 28, 2022 Sprenkle - CSCI209 36

Note method signatures

36

@Override
•Annotation
•Tells compiler “This method overrides a method

in a parent class. It should have the same
signature as that method in the parent class.”

•If your method signature does not match the
overridden method, then the compiler will give
you a error

•The point: use @Override so you don’t make
silly—yet costly—mistakes

Sept 28, 2022 Sprenkle - CSCI209 37

@Override
public boolean equals(Object obj) {

37

9/28/22

19

String toString()
• Automatically called when object is passed to print

methods
• Default implementation: Class name followed by @

followed by unsigned hexidecimal representation of
hashcode
ØHashcode is typically the internal address of the object
ØExample: Chicken@163b91

• General contract:
Ø“A concise but informative representation that is easy for a

person to read”
• Your responsibility: Document the format

Sept 28, 2022 Sprenkle - CSCI209 38

38

Chicken’s toString
•What would be a good string representation of a

Chicken object?
ØLook at output before and after toString method

implemented

Sept 28, 2022 Sprenkle - CSCI209 39

39

9/28/22

20

boolean equals(Object o)
•Procedure (Source: Effective Java)

1. Use the == operator to check if the argument is a
reference to this object

2. Use the instanceof operator to check if the argument
has the correct type
• If a variable is a null reference, then instanceof will be false

3. Cast the argument to the correct type
4. For each “significant” field in the class, check if that field

of the argument matches the corresponding field of this
object
• For doubles, use Double.compare and for floats use Float.compare

Sept 28, 2022 Sprenkle - CSCI209 40

How should we determine that two Chickens are equivalent?

Note method signature

40

Checking an Object’s Type
• Use the instanceof operator to see if an object

implements an interface or is an object of the given type
Øe.g., to determine if an object is a String

Sept 28, 2022 Sprenkle - CSCI209 41

if (obj instanceof String) {
// runs if obj is an object variable of type String

}
else {

// runs if obj is not an object variable of type String
}

41

9/28/22

21

What Not to Do

•It is not recommended that you turn the objects
into Strings (using toString) and then comparing

•While the outcome may be correct, String
operations are expensive

•String representation may not represent all of the
object

•Better to compare fields directly

Sept 28, 2022 Sprenkle - CSCI209 42

42

Summary: Inheritance So Far

•Every class inherits from Object class
•Can override methods of parent class(es)
•Useful Object methods to override:
ØString toString()
Øboolean equals(Object o)

Sept 28, 2022 Sprenkle - CSCI209 43

43

9/28/22

22

Looking Ahead

•Assignment 3 – updated! Reload page
ØDue Wednesday before class
ØBroke into more parts

Sept 28, 2022 Sprenkle - CSCI209 44

44

