
10/5/22

1

Objectives
•Garbage Collection
•Packages
•More on Inheritance
•Exam questions

Oct 5, 2022 Sprenkle - CSCI209 1

1

Review
• What are the benefits of

programmatically testing (i.e., having
the program determine if the test case
fails)?

• Some code is returning a private
variable from a public method
Ø Why could that be a problem?
Ø How should we implement that

method?
• How does Java pass parameters?

Ø What does that mean?
Ø What are the consequences of that

choice? (How does that affect how we
call methods?)

• Review from CSCI-112:
Ø What are the benefits of

inheritance?
Ø What are examples of inheritance?
Ø When should you use inheritance?

Oct 5, 2022 Sprenkle - CSCI209 2

2

10/5/22

2

Review: Providing Private Data

Oct 5, 2022 Sprenkle - CSCI209 3

public class Farm {
. . .
private Chicken headRooster;

public Chicken getHeadRooster() {
return (Chicken) headRooster.clone();

}
. . .

}

•Another Chicken object, with the same data as headRooster,
is created and returned to the user
• If the user modifies (e.g., feeds) that object, headRooster is not affected

Method is available to all objects
(inherited from Object)

3

Review: Method Parameters in Java
•Java always passes parameters into methods

by value
ØMeaning: the formal parameter becomes a copy of

the argument/actual parameter’s value
ØMethod caller and callee have two independent variables

with the same value
ØConsequence: Methods cannot change the variables

used as input parameters

Oct 5, 2022 Sprenkle - CSCI209 4

4

10/5/22

3

Review: Pass by Value: Objects

Oct 5, 2022 Sprenkle - CSCI209 5

public void methodName(Chicken c) {
if(c.getWeight() < MIN) {

c.feed();
}
…

}

chicken =

c =
height
=
name =

38

“Fred”

x00FFBB weight =

height =

name =

3.0

45

"Sallie Mae"x00FFBB

Can the Chicken object be changed in
calling method?
YES! Both chicken and c are
pointing to the same Chicken object

methodName(chicken);

5

Review: Summary of Method Parameters
•Everything is passed by value in Java
ØFormal parameter copies the actual parameter

•An object variable (not an object) is passed into a
method
ØChanging the state of an object in a method changes

the state of object outside the method
ØMethod does not see a copy of the original object

Oct 5, 2022 Sprenkle - CSCI209 6

6

10/5/22

4

What Happens in This Code?
Chicken x, y;
Chicken z = new Chicken("baby", 5, 1.0);
x = new Chicken("ed", 81, 10.3);
y = new Chicken("mo", 63, 6.2);
Chicken temp = x;
x = y;
y = temp;
z = x;

Oct 5, 2022 Sprenkle - CSCI209 7

Whoops! Lost “baby” chicken! -- No object variable references it
Memory leak!

Luckily Java has garbage collectors to clean up the memory leak

baby

7

GARBAGE COLLECTION

Oct 5, 2022 Sprenkle - CSCI209 8

8

10/5/22

5

Memory Management
•Early languages (e.g., C): free memory when you’re

done with it
•In C++ and some other OOP languages, classes have

explicit destructor methods that run when an object
is no longer in scope

•Java provides automatic garbage collection
ØReclaims memory allocated for objects that are no longer

referenced

Oct 5, 2022 Sprenkle - CSCI209 9

9

Garbage Collector
•Garbage collector is low-priority thread

ØOr runs when available memory gets tight
Øi.e., it doesn’t necessarily immediately free memory

•Before GC can clean up an object, the object may
have opened resources
ØEx: generated temp files or open network connections

that should be deleted/closed first
•GC calls object’s finalize() method

ØObject’s chance to clean up resources

Oct 5, 2022 Sprenkle - CSCI209 10

10

10/5/22

6

finalize()
• Inherited from java.lang.Object
• Called before garbage collector sweeps away an object and reclaims its

memory
• Should not be used for reclaiming resources

Ø i.e., close resources as soon as possible
Ø Why?

• When method is called is not deterministic or consistent
• Only know it will run sometime before garbage collection

• Clean up anything that cannot be atomically cleaned up by the garbage
collector
Ø Close file handles, network connections, database connections, etc.

• Note: no finalizer chaining
Ø Must explicitly call parent object’s finalize method

Oct 5, 2022 Sprenkle - CSCI209 11

11

Alternatives to finalize
•Recall: unknown when finalize will execute—or if

it will execute
ØAlso heavy performance cost

•Solution: create your own terminating method
ØUser of class terminates when done using object

•Examples: File’s or Scanner’s close method
•May still want finalize() as a safety net if user

didn’t call the terminate method
ØLog a warning message so user knows error in code

Oct 5, 2022 Sprenkle - CSCI209 12Do you know what Python does?

12

10/5/22

7

Python Garbage Collection
• Python also does garbage collection
• Python does reference counting

ØOn each reference/dereference, update the number of references to
the object
• Can’t handle reference cycles

• Python also does generational garbage
collection to handle reference cycles

• Tradeoffs with Java’s Garbage Collection
ØSynchronous (not asynchronous) process (i.e., slows down execution)
ØCheaper memory costs than Java for keeping track of what can be

garbage collected

Oct 5, 2022 Sprenkle - CSCI209 13

1

1

1

var

01

Discussion: Benefits and limitations of garbage collection?

13

Garbage Collection
Benefits

• Programmer doesn’t need to
worry about memory
management

• Cleans up unused memory
automatically, eventually

• Programmer can never release
memory that is then accessed
(a.k.a. seg faults)

Drawbacks

• Programmer doesn’t worry about
memory management
Ø May not be as careful to avoid memory

leaks

• Memory could be cleaned up
sooner

• Requires resources (CPU,
memory) to keep track of memory

• Slows program execution

Oct 5, 2022 Sprenkle - CSCI209 14

14

10/5/22

8

Garbage Collection
Benefits

• Programmer doesn’t need to
worry about memory
management

• Cleans up unused memory
automatically, eventually

• Programmer can never release
memory that is then accessed
(a.k.a. seg faults)

Drawbacks

• Programmer doesn’t worry about
memory management
Ø May not be as careful to avoid memory

leaks

• Memory could be cleaned up
sooner

• Requires resources (CPU,
memory) to keep track of memory

• Slows program execution

Oct 5, 2022 Sprenkle - CSCI209 15

• Generally, programmer time is more
valuable than computer resources.

• Generally, less buggy code is preferred
to more efficient code.

15

PACKAGES

Oct 5, 2022 Sprenkle - CSCI209 16

16

10/5/22

9

Review: Packages
•Hierarchical structure of Java classes
ØSimilar to Python’s modules
ØDirectories of directories

Oct 5, 2022 Sprenkle - CSCI209 17

java

net

lang

util

Object

Scanner

Fully qualified name: java.lang.StringString

17

Importing Packages
•Can import one class at a time or all the classes

within a package
•Examples:

Ø* form may increase compile time
•BUT, no effect on run-time performance

Oct 5, 2022 Sprenkle - CSCI209 18

import java.util.Date;
import java.util.*; Import entire java.util package

18

10/5/22

10

Why Packages?
•Organizes code
•Reduces chance of a conflict between names of

classes
ØExample: Java’s library has two classes named Array:

Oct 5, 2022 Sprenkle - CSCI209 19

java.lang.reflect.Array
java.sql.Array

19

Packaging Code
• Use package keyword to say that a class belongs to a package:

Øpackage my.package.name;
ØFirst line in class file
ØClasses without a declared package (like what we’ve been doing) are

in the default package
• Typically, use a unique prefix, similar to domain names

Øcom.ibm
Øedu.wlu.cs.logic

• Use package name to create directory hierarchy
ØFor example, code in edu.wlu.cs.logic package would be in a logic

directory inside a cs directory inside a wlu directory inside a edu
directory

We will start organizing our code in packages soon…
Oct 5, 2022 Sprenkle - CSCI209 20

20

10/5/22

11

INHERITANCE

Oct 5, 2022 Sprenkle - CSCI209 21

21

Review: Inheritance (from CSCI112)
•What are the benefits of inheritance?
•What are examples of inheritance?
•When should you use inheritance?

Oct 5, 2022 Sprenkle - CSCI209 22

22

10/5/22

12

Inheritance
•Build new classes based on existing classes
ØAllows code reuse

•Start with a class (parent or super class)
•Create another class that extends or specializes

the class
ØCalled the child, subclass, or derived class
ØUse extends keyword to make a subclass

Oct 5, 2022 Sprenkle - CSCI209 23

23

Child class
•Inherits all of parent class’s methods and fields

ØNote on private fields: all are inherited, just can’t access
•Constructors are not inherited
•Can override methods

ØRecall: overriding - methods have the same name and
parameters, but implementation is different

•Can add methods or fields for additional
functionality

•Use super object to call parent’s method
ØEven if child class redefines parent class’s method

Oct 5, 2022 Sprenkle - CSCI209 24

24

10/5/22

13

Inheriting Private Variables

Oct 5, 2022 Sprenkle - CSCI209 25

Parent

pr
iv

at
e

Child

Pa
re

nt

pr
iv

at
e

Parent

Parent has private variables.
Objects of Parent class can access.

Child class inherits the private
variables from Parent but
cannot directly access them.
Call Parent methods that can!

25

Rooster class
•Could write class from scratch, but …
•A rooster is a chicken
ØBut it adds something to (or specializes) what a

chicken is/does

•Classic mark of inheritance: is a relationship
•Rooster is child class
•Chicken is parent class

Oct 5, 2022 Sprenkle - CSCI209 26

26

10/5/22

14

Access Modifiers
•public

ØAny class can access
•private

ØNo other class can access (including child classes)
• Must use parent class’s public accessor/mutator methods

•protected
ØChild classes can access
ØMembers of package can access
ØOther classes cannot access

Oct 5, 2022 Sprenkle - CSCI209 27

27

Access Modes
Accessible to Member Visibility

public protected package private
Defining class Yes Yes Yes Yes

Class in same
package

Yes Yes Yes No

Subclass in
different package

Yes Yes No No

Non-subclass
different package

Yes No No No

Oct 5, 2022 Sprenkle - CSCI209 28

Default (if none specified)

• Visibility for fields: who can access/change
• Visibility for methods: who can call

28

10/5/22

15

protected
•Accessible to subclasses and members of package
•Can’t keep encapsulation “pure”
ØDon’t want others to access fields directly
ØMay break code if you change your implementation

•Assumption?
ØSomeone extending your class with protected access

(or in same package) knows what they are doing

Oct 5, 2022 Sprenkle - CSCI209 29

29

Guidance on Access Modifiers
•If you’re uncertain which access modifier to use

(public, protected, package/default, or private),
use the most restrictive
ØChanging to less restrictive later à easy
ØChanging to more restrictive à may break code that

uses your classes

Oct 5, 2022 Sprenkle - CSCI209 30

30

10/5/22

16

Looking Ahead: Exam on Friday
• Exam released at 8 a.m. on Friday

ØCloses: Sunday at 11:59 p.m.
ØNo Class on Friday
ØI am available for office 1:30-2:30 (but not during 8:30-9:30)

• Online, timed exam: 70 minutes
• Open book/notes/slides – but do not rely on that

ØNOT open internet
• Prep document online
• 3 sections:

ØVery Short Answer, Short Answer, Coding
Oct 5, 2022 Sprenkle - CSCI209 31

31

