
10/10/22

1

Objectives
•Inheritance

Oct 10, 2022 Sprenkle - CSCI209 1

1

Review
•When should you apply inheritance?
Øi.e., what is the relationship you should look for?

•What are Java’s inheritance rules?
Øi.e., what is inherited? What is not inherited?

•How do you refer to the parent class in Java?

Oct 10, 2022 Sprenkle - CSCI209 2

2

10/10/22

2

Child class
•Inherits all of parent class’s methods and fields

ØNote on private fields: all are inherited, just can’t access
•Constructors are not inherited
•Can override methods

ØRecall: overriding - methods have the same name and
parameters, but implementation is different

•Can add methods or fields for additional
functionality

•Use super object to call parent’s method
ØEven if child class redefines parent class’s method

Oct 10, 2022 Sprenkle - CSCI209 3

3

Inheriting Private Variables

Oct 10, 2022 Sprenkle - CSCI209 4

Parent

pr
iv

at
e

Child

Pa
re

nt

pr
iv

at
e

Parent

Parent has private variables.
Objects of Parent class can access.

Child class inherits the private
variables from Parent but
cannot directly access them.
Call Parent methods that can!

4

10/10/22

3

Rooster class
•Could write class from scratch, but …
•A rooster is a chicken
ØBut it adds something to (or specializes) what a

chicken is/does

•Classic mark of inheritance: is a relationship
•Rooster is child class
•Chicken is parent class

Oct 10, 2022 Sprenkle - CSCI209 5

5

Access Modifiers
•public

ØAny class can access
•private

ØNo other class can access (including child classes)
• Must use parent class’s public accessor/mutator methods

•protected
ØChild classes can access
ØMembers of package can access
ØOther classes cannot access

Oct 10, 2022 Sprenkle - CSCI209 6

6

10/10/22

4

Access Modes
Accessible to Member Visibility

public protected package private
Defining class Yes Yes Yes Yes

Class in same
package

Yes Yes Yes No

Subclass in
different package

Yes Yes No No

Non-subclass
different package

Yes No No No

Oct 10, 2022 Sprenkle - CSCI209 7

Default (if none specified)

• Visibility for fields: who can access/change
• Visibility for methods: who can call

7

protected
•Accessible to subclasses and members of package
•Can’t keep encapsulation “pure”
ØDon’t want others to access fields directly
ØMay break code if you change your implementation

•Assumption?
ØSomeone extending your class with protected access

(or in same package) knows what they are doing

Oct 10, 2022 Sprenkle - CSCI209 8

8

10/10/22

5

Guidance on Access Modifiers
•If you’re uncertain which access modifier to use

(public, protected, package/default, or private),
use the most restrictive
ØChanging to less restrictive later à easy
ØChanging to more restrictive à may break code that

uses your classes

Oct 10, 2022 Sprenkle - CSCI209 9

9

Changes to Chicken Class
•Added a new instance variable called is_female
•Added getter and setter for is_female
•Updated toString, equals methods accordingly

•2 Chicken classes in examples
ØChicken.java private instance variables
ØChicken2.java protected instance variables

Oct 10, 2022 Sprenkle - CSCI209 10

10

10/10/22

6

Rooster class

Oct 10, 2022 Sprenkle - CSCI209 11

public class Rooster extends Chicken {
public Rooster(String name, int height, double weight) {

super(name, height, weight, false);
}

// new functionality
public void crow() { … }

…
}

Call to super constructor must be first statement in constructor

extends means that Rooster
is a child of Chicken

11

Rooster class

Oct 10, 2022 Sprenkle - CSCI209 12

public class Rooster extends Chicken {
public Rooster(String name, int height, double weight) {

// all instance fields inherited
// from super class
this.name = name;
this.height = height;
this.weight = weight;
this.is_female = false;

}

// new functionality
public void crow() {… }
…

If no explicit call to super, calls default
super constructor with no parameters

extends means that Rooster
is a child of Chicken

(not one of the
examples posted online)

12

10/10/22

7

Constructor Chaining
•Constructor automatically calls constructor of

parent class if not done explicitly
Øsuper();

•What if parent class does not have a constructor
with no parameters?
ØCompilation error
ØForces child classes to call a constructor with

parameters
Oct 10, 2022 Sprenkle - CSCI209 13

13

Inheritance Tree: Constructor Chaining
•java.lang.Object
ØChicken
•Rooster

•Call parent class’s constructor first
ØKnow you have fields of parent class before

implementing constructor for your class

Oct 10, 2022 Sprenkle - CSCI209 14

Object

Chicken

Rooster

1

2

14

10/10/22

8

Overriding and New Methods

Oct 10, 2022 Sprenkle - CSCI209 15

public class Rooster extends Chicken {
…

// overrides superclass; greater gains
@Override
public void feed() {

weight += .5;
height += 2;

}

// new functionality
public void crow() {

System.out.println("Cocka-Doodle-Doo!");
}

}

Same method signature
as parent class

Specializes the class

15

Shadowing Parent Class Fields
•Shadowing: Child class has field with same name

as parent class
ØYou probably shouldn’t shadow a field

•Example: more precision for a constant (e.g.,
more weight gain for a rooster)

Oct 10, 2022 Sprenkle - CSCI209 16

field // this class's field
this.field // this class's field
super.field // super class's field

16

10/10/22

9

Multiple Inheritance
•In Python, a class can inherit more than one

parent class
ØChild class has the fields from both parent classes

•This is NOT possible in Java.
ØA class may extend (or inherit from) only one class

Oct 10, 2022 Sprenkle - CSCI209 17

17

POLYMORPHISM & DISPATCH

Oct 10, 2022 Sprenkle - CSCI209 18

18

10/10/22

10

Polymorphism
• Polymorphism is an object’s ability to vary behavior based on

its type
• You can use a child class object whenever the program expects

an object of the parent class
• Object variables are polymorphic
• A Chicken object variable can refer to an object of class
Chicken, Rooster, Hen, or any class that inherits from
Chicken

Oct 10, 2022 Sprenkle - CSCI209 19

Chicken[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;
chickens[2] = baby;

We can guess the actual types
But compiler can’t

19

Somewhere Else…

•These objects were instantiated at some point in
time …

Oct 10, 2022 Sprenkle - CSCI209 20

Rooster foghorn = new Rooster(…);
Hen momma = new Hen(…);
Chicken baby = new Chicken(…);

20

10/10/22

11

Compiler’s Behavior

•We know chickens[1] is probably a Rooster, but to
compiler, it’s a Chicken so

chickens[1].crow(); will not compile

Oct 10, 2022 Sprenkle - CSCI209 21

Chicken[] chickens = new Chicken[3];
chickens[0] = momma; // a Hen
chickens[1] = foghorn; // a Rooster
chickens[2] = baby; // a Chicken

21

Compiler’s Behavior
• When we refer to a Rooster object through a Rooster

object variable, compiler sees it as a Rooster object
• If we refer to a Rooster object through a Chicken object

variable, compiler sees it as a Chicken object.

• We cannot assign a parent class object to a child class
object variable
ØEx: Rooster is a Chicken, but a Chicken is not necessarily a
Rooster

Oct 10, 2022 Sprenkle - CSCI209 22

Rooster r = chicken;

à Object variable determines how compiler sees object.

22

10/10/22

12

Polymorphism

Oct 10, 2022 Sprenkle - CSCI209 23

Chicken[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;
chickens[2] = baby;

chickens[1].feed();

Compiles because Chicken has a feed method.

But, which feed method is called –
Chicken’s or Rooster’s?

23

Polymorphism
•Which method do we call when we call
chicken[1].feed()?
Rooster’s or Chicken’s?

•In Java: Rooster’s!
ØObject is a Rooster
ØJVM figures out object’s class at runtime and runs the

appropriate method
•Dynamic dispatch

ØAt runtime, the object’s class is determined
ØAppropriate method for that class is dispatched

Oct 10, 2022 Sprenkle - CSCI209 24

24

10/10/22

13

Feed the Chickens!

•Dynamic dispatch calls the method corresponding to
the actual class of each object at run time
ØThis is the power of polymorphism and dynamic dispatch!

Oct 10, 2022 Sprenkle - CSCI209 25

for(Chicken c: chickens) {
c.feed();

}
How to read this code?
What happens in execution?

Chicken[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;
chickens[2] = baby;

Recall:

Think on your own for 1 minute

25

Dynamic Dispatch vs. Static Dispatch
• Dynamic dispatch is not necessarily a property of statically typed

object-oriented programming languages in general
• Some OOP languages use static dispatch

Ø Type of the object variable that the method is called on determines which
version of method gets run

• The primary difference is when decision on which method to call
is made…
Ø Static dispatch (C#) decides at compile time
ØDynamic dispatch (Java, Python) decides at run time

• Dynamic dispatch is slower
Ø In mid to late 90s, active research on how to decrease time

Oct 10, 2022 Sprenkle - CSCI209 26

26

10/10/22

14

What Will This Code Output?

Oct 10, 2022 Sprenkle - CSCI209 27

class Parent {
public Parent() {}

public void method1() {
System.out.println("Parent: method1");

}

public void method2() {
System.out.println("Parent: method2");
method1();

}
}

class Child extends Parent {
public Child() {}

public void method1() {
System.out.println("Child: method1");

}
}

public class DynamicDispatchExample {
public static void main(String[] args) {

Parent p = new Parent();
Child c = new Child();

p.method1();
System.out.println("");

c.method1();
System.out.println("");

p.method2();
System.out.println("");

c.method2();
System.out.println("");

}
}

Think on your own for 1 minute

27

What Will This Code Output?

Oct 10, 2022 Sprenkle - CSCI209 28

class Parent {
public Parent() {}

public void method1() {
System.out.println("Parent: method1");

}

public void method2() {
System.out.println("Parent: method2");
method1();

}
}

class Child extends Parent {
public Child() {}

public void method1() {
System.out.println("Child: method1");

}
}

public class DynamicDispatchExample {
public static void main(String[] args) {

Parent p = new Parent();
Child c = new Child();

p.method1();
System.out.println("");

c.method1();
System.out.println("");

p.method2();
System.out.println("");

c.method2();
System.out.println("");

}
}

Parent: method1

Child: method1

Parent: method2
Parent: method1

Parent: method2
Child: method1

28

10/10/22

15

Inheritance Rules: Access Modifiers

•Why?
•What would happen if a method in the parent

class is public but the child class’s method is
private?
Oct 10, 2022 Sprenkle - CSCI209 29

Access modifiers in child classes
• Can make access to child class less restrictive but

not more restrictive

29

Inheritance Rules: Access Modifiers

• If a public method could be overridden as a protected or
privatemethod, child objects would not be able to respond to
the same method calls as parent objects

• When a method is declared public in the parent, the method
remains public for all that class’s child classes

• Remembering the rule: compiler error to override a method with
a more restricted access modifier
Oct 10, 2022 Sprenkle - CSCI209 30

Access modifiers in child classes
• Can make access to child class less restrictive but

not more restrictive

30

10/10/22

16

PREVENTING INHERITANCE

Oct 12, 2022 Sprenkle - CSCI209 31

31

Oct 12, 2022 Sprenkle - CSCI209 32

Preventing Inheritance: final Class
• If you have a class and you do not want child/derived

classes, you can define the class as final

•Examples of final class: java.lang.System and
java.lang.String

public final class Rooster extends Chicken {
. . .

}

32

10/10/22

17

Oct 12, 2022 Sprenkle - CSCI209 33

Preventing Overriding: final Method
•If you don’t want child classes to override a

method, you can make that method final
class Chicken {

. . .
public final String getName() { . . . }
. . .

}

Why would we want to make a method final?
What are possible benefits to us, the compiler, …?

33

Summary of Inheritance
•Remove repetitive code by modeling the “is-a”

hierarchy
ØMove “common denominator” code up the

inheritance chain
•Don’t use inheritance unless all inherited

methods make sense
•Use polymorphism

Oct 10, 2022 Sprenkle - CSCI209 34

34

10/10/22

18

Assignment 4
• Start of a simple video game

ØGame class to run
ØGamePiece is parent class of other moving objects

• Some less-than-ideal design
ØCan’t fix until see other Java structures
ØDon’t need to understand all of the code (yet), just some of it

• Create a Goblin class and a Treasure class
ØMove Goblin and Treasure

• Due next Wednesday before class
ØCan start on Parts 0-2 now (harder parts than part 3)

Oct 10, 2022 Sprenkle - CSCI209 35

35

