
10/17/22

1

Objectives
•Collection Framework

Oct 17, 2022 Sprenkle - CSCI209 1

1

Iteration over Code: Assignment 4
• Demonstrates typical design/implementation process

Ø Start with original code design
• Inheritance from GamePiece class

Ø Realize it could be designed better
• Make GamePiece class abstract
• Use an array of GamePiece objects
• Easier to add new functionality to Game

• Major part of problem-solving is figuring out how to break problem into
smaller pieces

• Reminders
Ø Heed my warnings
Ø Start simple, small (e.g., Goblin only moves left)

Oct 17, 2022 Sprenkle - CSCI209 2

2

10/17/22

2

Review
• What are jar files? How are they

used?
• What is the classpath?
• Compare and contrast abstract

classes and interfaces
Ø When should a class be abstract?
Ø When should you create/use an

interface?

• What is the syntax for Generics?
How are they used?

• True or False:
Ø If you extend an abstract class, you

have to override all abstract
methods.

Ø You can instantiate an abstract class
Ø You can have an object variable of an

abstract class
Ø You can have an object variable of an

interface

• 112 review: what are lists, sets,
and dictionaries?

Oct 17, 2022 Sprenkle - CSCI209 3

3

Review: Interfaces vs Abstract Classes
Interfaces

• Only specification (no
implementation)

• Any class can implement
Ø Because classes can implement multiple

interfaces

• Implementing methods multiple times
• Adding a method to interface will

break classes that implement that
interface

Abstract Classes

• Contain partial implementation
• Child classes can’t extend/subclass

multiple classes
• Add non-abstract methods without

breaking subclasses

Oct 17, 2022 Sprenkle - CSCI209 4

4

10/17/22

3

Review: Java Collections Framework
•Unified architecture for representing and

manipulating collections

•More than arrays
ØMore flexible, functionality, dynamic sizing

•In java.util package
Oct 17, 2022 Sprenkle - CSCI209 5

5

Review: Collections Framework
• Interfaces

Ø Abstract data types that represent collections
Ø Collections can be manipulated independently of implementation

• Implementations
Ø Concrete implementations of collection interfaces
Ø Reusable data structures

• Algorithms
Ø Methods that perform useful computations on collections, e.g., searching

and sorting
Ø Reusable functionality
Ø Polymorphic: same method can be used on many different implementations

of collection interface

Oct 17, 2022 Sprenkle - CSCI209 6

6

10/17/22

4

List Interface
•An ordered collection of elements
•Can contain duplicate elements
•Has control over where objects are stored in the

list

Oct 17, 2022 Sprenkle - CSCI209 7

7

List Interface
•boolean add(<E> o)

ØReturns boolean so that List can refuse some elements
• e.g., refuse adding null elements

•<E> get(int index)
ØReturns element at the position index
ØDifferent from Python: no shorthand

• Can’t write list[pos]
•int size()

ØReturns the number of elements in the list
• And more!

Øcontains, remove, toArray, …

Oct 17, 2022 Sprenkle - CSCI209 8

8

10/17/22

5

List Interface
•boolean add(<E> o)

ØReturns boolean so that List can refuse some elements
• e.g., refuse adding null elements

•<E> get(int index)
ØReturns element at the position index
ØDifferent from Python: no shorthand

• Can’t write list[pos]
•int size()

ØReturns the number of elements in the list
• And more!

Øcontains, remove, toArray, …

Oct 17, 2022 Sprenkle - CSCI209 9

<E>: Generics!

9

Generic Collection Interfaces
• Declaration of the Collection interface:

Ø<E> means interface is generic for element class
• When declare a Collection, specify type of object it contains

ØAllows compiler to verify that object’s type is correct
• Reduces errors at runtime

• Example, a hand of cards:

Oct 17, 2022 Sprenkle - CSCI209 10

List<Card> hand = new ArrayList<Card>();

Type
parameter

Always declare type
contained in collections

public interface Collection<E> …

List<Card> hand = new ArrayList<>();Added in Java 7:

10

10/17/22

6

Comparing: Before & After Generics
•Before Generics

Oct 17, 2022 Sprenkle - CSCI209 11

List myList = new LinkedList();
myList.add(new Card(4, "clubs"));
…
Card x = (Card) myList.get(0);

• List of Objects
• Need to cast to the

desired child class

11

Comparing: Before & After Generics
•Before Generics

•After Generics

Oct 17, 2022 Sprenkle - CSCI209 12

List myList = new LinkedList();
myList.add(new Card(4, "clubs"));
…
Card x = (Card) myList.get(0);

List<Card> myList = new LinkedList<>();
myList.add(new Card(4, "clubs"));
…
Card x = myList.get(0);

ü Improved readability and robustness

• List of Objects
• Need to cast to the

desired child class

• If you try to add not-a-
Card, compiler gives
an error

12

10/17/22

7

Types Allowed with Generics
•Can only contain Objects, not primitive types

•Autoboxing and Autounboxing to the rescue!

Oct 17, 2022 Sprenkle - CSCI209 13

13

WRAPPER CLASSES

Oct 17, 2022 Sprenkle - CSCI209 14

14

10/17/22

8

Wrapper Classes
•Sometimes need an instance of an Object
ØEx: to store in Lists and other Collections

•Each primitive type has a Wrapper class
ØExamples: Integer, Double, Long, Character, …

•Include functionality of parsing their respective
data types

Oct 17, 2022 Sprenkle - CSCI209 15

int x = 10;
Integer y = Integer.valueOf(x);
Integer z = Integer.valueOf("10");

15

Wrapper Classes
•Autoboxing – automatically create a wrapper object

•Autounboxing – automatically extract a primitive type

Oct 17, 2022 Sprenkle - CSCI209 16

Integer x = Integer.valueOf(11);
int y = x.intValue();
int z = x; // implicitly, x is x.intValue();

Integer y = 11; // implicitly 11 converted to Integer,
// e.g., Integer.valueOf(11)

Converts right side to whatever is needed on the left

16

10/17/22

9

Effective Java: Unnecessary Autoboxing

Oct 17, 2022 Sprenkle - CSCI209 17

Long sum = 0L;
for (long i=0; i < Integer.MAX_VALUE; i++) {

sum += i;
}
System.out.println(sum);

Autobox.java

• Can you find the inefficiency from object creation?
• How can you fix the inefficiency?

17

Effective Java: Unnecessary Autoboxing

Oct 17, 2022 Sprenkle - CSCI209 18

Long sum = 0L;
for (long i=0; i < Integer.MAX_VALUE; i++) {

sum += i;
}
System.out.println(sum);

Autobox.java

• How can you fix the inefficiency?

Constructs 231 Long instances

AutoboxFixed.java

18

10/17/22

10

Effective Java: Unnecessary Autoboxing

Oct 17, 2022 Sprenkle - CSCI209 19

Long sum = 0L;
for (long i=0; i < Integer.MAX_VALUE; i++) {

sum += i;
}
System.out.println(sum);

Autobox.java

Constructs 231 Long instances

AutoboxFixed.java

Lessons:
•Prefer primitives to boxed primitives
•Watch for unintentional autoboxing

19

List Interface
•boolean add(<E> o)

ØBoolean so that List can refuse some elements
• e.g., refuse adding null elements

•<E> get(int index)
ØReturns element at the position index
ØDifferent from Python: no shorthand

• Can’t write list[pos]
•int size()

ØReturns the number of elements in the list
• And more!

Øcontains, remove, toArray, …

Oct 17, 2022 Sprenkle - CSCI209 20

20

10/17/22

11

Common List Implementations
•ArrayList

ØResizable array
ØUsed most frequently
ØFast

•LinkedList
ØUse if adding elements to

ends of list
ØUse if often delete from

middle of list
ØImplements Deque and

other methods so that it
can be used as a stack or
queue

Oct 17, 2022 Sprenkle - CSCI209 21
How would you find the other implementations of List?

When should you use one vs the other?

21

API Notes
•ArrayList and LinkedList extend from
AbstractList, which implements List
interface

Oct 17, 2022 Sprenkle - CSCI209 22

22

10/17/22

12

Implementation vs. Interface

•Preferred Style:
1. Choose an implementation
2. Assign collection to variable of corresponding interface

type

•Methods should accept interfaces—not
implementations
Oct 17, 2022 Sprenkle - CSCI209 23

Implementation choice only affects performance

Interface variable = new Implementation();
Example: List<Card> hand = new ArrayList<>();

Why is this the preferred style?
public void method(Interface var) {…}

23

Implementation vs. Interface

• Preferred Style:
1. Choose an implementation
2. Assign collection to variable of corresponding interface type

• Why?
ØProgram does not depend on a given implementation’s

methods
• Access only using interface’s methods

ØProgrammer can change implementations
• Performance concerns or behavioral details

Oct 17, 2022 Sprenkle - CSCI209 24

Implementation choice only affects performance

24

10/17/22

13

Design Principle: Program to an Interface
•(Not an implementation)
•Implementation choice only affects performance
•Methods should accept interfaces—not

implementations

•Makes code more resilient to change
ØCan change implementation and not affect interface

Oct 17, 2022 Sprenkle - CSCI209 25

public void method(Interface var) {…}

25

Traversing Collections: For-each Loop
•For-each loop:

•Valid for all Collections
ØMaps (and its implementations) are not
Collections
•But, Map’s keySet() is a Set and values() is a
Collection

Oct 17, 2022 Sprenkle - CSCI209 26

for (Object o : collection)
System.out.println(o);

Or whatever data type is appropriate

26

10/17/22

14

Discussion of Deck Class

Oct 17, 2022 Sprenkle - CSCI209 27

cards.Deck.java

27

SETS

Oct 17, 2022 Sprenkle - CSCI209 28

28

10/17/22

15

Set Interface
•No duplicate elements
ØNeeds to determine if two elements are “logically” the

same (equals method)

•Models mathematical set abstraction

Oct 17, 2022 Sprenkle - CSCI209 29

29

Set Interface
•boolean add(<E> o)
ØAdd to set, only if not already present

•int size()
ØReturns the number of elements in the list

• And more! (contains, remove,
toArray, …)
ØNote: no get method – can’t get #3 from the

set because sets aren’t ordered.
Oct 17, 2022 Sprenkle - CSCI209 30

30

10/17/22

16

Some Set Implementations
•HashSet

ØImplements set using hash
table
• add, remove, and contains

each execute in O(1) time

ØUsed more frequently
ØFaster than TreeSet
ØNo ordering

•TreeSet
ØImplements set using a tree

• add, remove, and contains
each execute in O(log n) time

ØSorts

Oct 17, 2022 Sprenkle - CSCI209 31

31

MAPS

Oct 17, 2022 Sprenkle - CSCI209 32

32

10/17/22

17

Maps
•Python called these dictionaries

•Maps keys (of type <K>) to values (of type <V>)

•No duplicate keys
ØEach key maps to at most one value

Oct 17, 2022 Sprenkle - CSCI209 33

33

Declaring Maps
•Declare types for both keys and values
•class HashMap<K,V>

Oct 17, 2022 Sprenkle - CSCI209 34

Keys are Strings Values are Lists of Strings

Map<String, List<String>> map = new HashMap<>();

Keys are Strings Values are Integers

Map<String, Integer> map = new HashMap<>();

34

10/17/22

18

Map Interface
•<V> put(<K> key, <V> value)

ØReturns old value that key mapped to

•<V> get(Object key)
ØReturns value at that key (or null if no mapping)

•Set<K> keySet()
ØReturns the set of keys

Oct 17, 2022 Sprenkle - CSCI209 35

And more …

35

A few Map Implementations
•HashMap
ØFast

•TreeMap
ØSorting
ØKey-ordered iteration

•LinkedHashMap
ØFast
ØInsertion-order iteration

Oct 17, 2022 Sprenkle - CSCI209 36MapExample.java
36

10/17/22

19

Looking Ahead
•Assignment 4 Due Before Class

Oct 17, 2022 Sprenkle - CSCI209 37

37

