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Objectives
•Collection Framework
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Iteration over Code: Assignment 4
• Demonstrates typical design/implementation process

Ø Start with original code design
• Inheritance from GamePiece class

Ø Realize it could be designed better
• Make GamePiece class abstract
• Use an array of GamePiece objects
• Easier to add new functionality to Game

• Major part of problem-solving is figuring out how to break problem into 
smaller pieces

• Reminders
Ø Heed my warnings
Ø Start simple, small (e.g., Goblin only moves left)
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Review
• What are jar files?  How are they 

used?
• What is the classpath? 
• Compare and contrast abstract 

classes and interfaces
Ø When should a class be abstract? 
Ø When should you create/use an 

interface?

• What is the syntax for Generics?  
How are they used?

• True or False:
Ø If you extend an abstract class, you 

have to override all abstract 
methods.

Ø You can instantiate an abstract class
Ø You can have an object variable of an 

abstract class
Ø You can have an object variable of an 

interface

• 112 review: what are lists, sets, 
and dictionaries?
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Review: Interfaces vs Abstract Classes
Interfaces

• Only specification (no 
implementation)

• Any class can implement
Ø Because classes can implement multiple 

interfaces

• Implementing methods multiple times
• Adding a method to interface will 

break classes that implement that 
interface

Abstract Classes

• Contain partial implementation
• Child classes can’t extend/subclass 

multiple classes
• Add non-abstract methods without 

breaking subclasses 
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Review: Java Collections Framework
•Unified architecture for representing and 

manipulating collections

•More than arrays
ØMore flexible, functionality,  dynamic sizing

•In java.util package
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Review: Collections Framework
• Interfaces

Ø Abstract data types that represent collections
Ø Collections can be manipulated independently of implementation 

• Implementations
Ø Concrete implementations of collection interfaces
Ø Reusable data structures

• Algorithms
Ø Methods that perform useful computations on collections, e.g., searching 

and sorting
Ø Reusable functionality
Ø Polymorphic: same method can be used on many different implementations 

of collection interface
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List Interface
•An ordered collection of elements
•Can contain duplicate elements
•Has control over where objects are stored in the 

list
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List Interface
•boolean add(<E> o)

ØReturns boolean so that List can refuse some elements
• e.g., refuse adding null elements

•<E> get(int index)
ØReturns element at the position index
ØDifferent from Python: no shorthand

• Can’t write list[pos]
•int size() 

ØReturns the number of elements in the list
• And more!

Øcontains, remove, toArray, …
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List Interface
•boolean add(<E> o)

ØReturns boolean so that List can refuse some elements
• e.g., refuse adding null elements

•<E> get(int index)
ØReturns element at the position index
ØDifferent from Python: no shorthand

• Can’t write list[pos]
•int size() 

ØReturns the number of elements in the list
• And more!

Øcontains, remove, toArray, …
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<E>: Generics!
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Generic Collection Interfaces
• Declaration of the Collection interface:

Ø<E> means interface is generic for element class
• When declare a Collection, specify type of object it contains

ØAllows compiler to verify that object’s type is correct
• Reduces errors at runtime

• Example, a hand of cards:
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List<Card> hand = new ArrayList<Card>();

Type 
parameter

Always declare type 
contained in collections

public interface Collection<E> …

List<Card> hand = new ArrayList<>();Added in Java 7: 

10



10/17/22

6

Comparing: Before & After Generics
•Before Generics
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List myList = new LinkedList();
myList.add(new Card(4, "clubs"));
…
Card x = (Card) myList.get(0);

• List of Objects
• Need to cast to the 

desired child class
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Comparing: Before & After Generics
•Before Generics

•After Generics
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List myList = new LinkedList();
myList.add(new Card(4, "clubs"));
…
Card x = (Card) myList.get(0);

List<Card> myList = new LinkedList<>();
myList.add(new Card(4, "clubs"));
…
Card x = myList.get(0);

ü Improved readability and robustness 

• List of Objects
• Need to cast to the 

desired child class

• If you try to add not-a-
Card, compiler gives 
an error
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Types Allowed with Generics
•Can only contain Objects, not primitive types

•Autoboxing and Autounboxing to the rescue!
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WRAPPER CLASSES
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Wrapper Classes
•Sometimes need an instance of an Object
ØEx: to store in Lists and other Collections

•Each primitive type has a Wrapper class
ØExamples: Integer, Double, Long, Character, …

•Include functionality of parsing their respective 
data types 
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int x = 10; 
Integer y = Integer.valueOf(x);
Integer z = Integer.valueOf("10");
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Wrapper Classes
•Autoboxing – automatically create a wrapper object

•Autounboxing – automatically extract a primitive type
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Integer x = Integer.valueOf(11); 
int y = x.intValue();
int z = x; // implicitly, x is x.intValue();

Integer y = 11; // implicitly 11 converted to Integer,
// e.g., Integer.valueOf(11)

Converts right side to whatever is needed on the left
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Effective Java: Unnecessary Autoboxing
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Long sum = 0L;
for (long i=0; i < Integer.MAX_VALUE; i++) {

sum += i;
}
System.out.println(sum);

Autobox.java

• Can you find the inefficiency from object creation?
• How can you fix the inefficiency?

17

Effective Java: Unnecessary Autoboxing
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Long sum = 0L;
for (long i=0; i < Integer.MAX_VALUE; i++) {

sum += i;
}
System.out.println(sum);

Autobox.java

• How can you fix the inefficiency?

Constructs 231 Long instances

AutoboxFixed.java
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Effective Java: Unnecessary Autoboxing
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Long sum = 0L;
for (long i=0; i < Integer.MAX_VALUE; i++) {

sum += i;
}
System.out.println(sum);

Autobox.java

Constructs 231 Long instances

AutoboxFixed.java

Lessons:
•Prefer primitives to boxed primitives
•Watch for unintentional autoboxing
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List Interface
•boolean add(<E> o)

ØBoolean so that List can refuse some elements
• e.g., refuse adding null elements

•<E> get(int index)
ØReturns element at the position index
ØDifferent from Python: no shorthand

• Can’t write list[pos]
•int size() 

ØReturns the number of elements in the list
• And more!

Øcontains, remove, toArray, …
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Common List Implementations
•ArrayList

ØResizable array
ØUsed most frequently
ØFast

•LinkedList
ØUse if adding elements to 

ends of list
ØUse if often delete from 

middle of list
ØImplements Deque and 

other methods so that it 
can be used as a stack or 
queue 
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How would you find the other implementations of List?

When should you use one vs the other?
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API Notes
•ArrayList and LinkedList extend from
AbstractList, which implements List
interface
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Implementation vs. Interface

•Preferred Style:
1. Choose an implementation
2. Assign collection to variable of corresponding interface 

type

•Methods should accept interfaces—not 
implementations
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Implementation choice only affects performance

Interface variable = new Implementation();
Example: List<Card> hand = new ArrayList<>();

Why is this the preferred style?
public void method( Interface var ) {…}
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Implementation vs. Interface

• Preferred Style:
1. Choose an implementation
2. Assign collection to variable of corresponding interface type

• Why?
ØProgram does not depend on a given implementation’s 

methods
• Access only using interface’s methods

ØProgrammer can change implementations
• Performance concerns or behavioral details
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Implementation choice only affects performance
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Design Principle: Program to an Interface
•(Not an implementation)
•Implementation choice only affects performance
•Methods should accept interfaces—not 

implementations

•Makes code more resilient to change
ØCan change implementation and not affect interface
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public void method( Interface var ) {…}
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Traversing Collections: For-each Loop
•For-each loop:

•Valid for all Collections
ØMaps (and its implementations) are not 
Collections
•But, Map’s keySet() is a Set and values() is a 
Collection
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for (Object o : collection) 
System.out.println(o);

Or whatever data type is appropriate
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Discussion of Deck Class
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cards.Deck.java
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SETS
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Set Interface
•No duplicate elements
ØNeeds to determine if two elements are “logically” the 

same (equals method)

•Models mathematical set abstraction
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Set Interface
•boolean add(<E> o)
ØAdd to set, only if not already present

•int size() 
ØReturns the number of elements in the list

• And more!  (contains, remove, 
toArray, …)
ØNote: no get method – can’t get #3 from the 

set because sets aren’t ordered.
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Some Set Implementations
•HashSet

ØImplements set using hash 
table
• add, remove, and contains

each execute in O(1) time

ØUsed more frequently
ØFaster than TreeSet
ØNo ordering

•TreeSet
ØImplements set using a tree

• add, remove, and contains
each execute in    O(log n) time 

ØSorts
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MAPS
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Maps
•Python called these dictionaries

•Maps keys (of type <K>) to values (of type <V>)

•No duplicate keys
ØEach key maps to at most one value
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Declaring Maps
•Declare types for both keys and values
•class HashMap<K,V>
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Keys are Strings Values are Lists of Strings

Map<String, List<String>> map = new HashMap<>();

Keys are Strings Values are Integers

Map<String, Integer> map = new HashMap<>();
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Map Interface
•<V> put(<K> key, <V> value)

ØReturns old value that key mapped to

•<V> get(Object key) 
ØReturns value at that key (or null if no mapping)

•Set<K> keySet() 
ØReturns the set of keys
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And more …
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A few Map Implementations
•HashMap
ØFast

•TreeMap
ØSorting
ØKey-ordered iteration

•LinkedHashMap
ØFast
ØInsertion-order iteration

Oct 17, 2022 Sprenkle - CSCI209 36MapExample.java
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Looking Ahead
•Assignment 4 Due Before Class
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