
12/1/22

1

Objectives
•Collections wrap up
•Exceptions
•Eclipse

Oct 19, 2022 Sprenkle - CSCI209 1

1

Review
• What are wrapper classes? When do we use them?
• What are the components of the Java Collections Framework?
• What are the three interfaces we discussed?

ØWhat are example implementations of those interfaces?
• I made the claim that this is the preferred way to create an

object variable that adheres to an interface:

ØWhy is that the preferred way? What is the design principle it
adheres to?

Oct 19, 2022 Sprenkle - CSCI209 2

Interface variable = new Implementation();
Example: List<Card> hand = new ArrayList<>();

2

12/1/22

2

ALGORITHMS

Oct 19, 2022 Sprenkle - CSCI209 3

3

Collections Framework’s Algorithms
•Polymorphic algorithms
•Reusable functionality
•Implemented in the Collections class
ØSimilar to Arrays class, which operates on arrays
ØStatic methods, 1st argument is the Collection

Oct 19, 2022 Sprenkle - CSCI209 4

4

12/1/22

3

Overview of Available Algorithms
•Sorting – optional Comparator
•Shuffling
•Searching – binarySearch
•Routine data manipulation: reverse*, copy*, fill*,

swap*, addAll
•Composition – frequency, disjoint
•Finding min, max

Oct 19, 2022 Sprenkle - CSCI209 5

* Only Lists

5

TRAVERSING COLLECTIONS

Oct 19, 2022 Sprenkle - CSCI209 6

6

12/1/22

4

Review: Traversing Collections: For-each Loop

•For-each loop:

•Valid for all Collections
ØMaps (and its implementations) are not
Collections
•But, Map’s keySet() is a Set and values() is a
Collection

Oct 19, 2022 Sprenkle - CSCI209 7

for (Object o : collection)
System.out.println(o);

Or whatever data type is appropriate

7

Traversing Lists: Iterator
•Always between two elements

Oct 19, 2022 Sprenkle - CSCI209 8

Iterator<Integer> i = list.iterator();
while(i.hasNext()) {

int value = i.next();
…

}

Helpful to use if removing elements from list during iteration

8

12/1/22

5

Benefits of Collections Framework
•?

Oct 19, 2022 Sprenkle - CSCI209 15

15

Benefits of Collections Framework
• Provides common, well-known interface

Ø Allows interoperability among unrelated APIs
Ø Reduces effort to learn and to use new APIs for different implementations

• Reduces programming effort: provides useful, reusable data structures
and algorithms

• Increases program speed and quality: provides high-performance, high-
quality implementations of data structures and algorithms;
interchangeable implementations à tuning

• Reduces effort to design new APIs: use standard collection interface for
your collection

• Fosters software reuse: New data structures/algorithms that conform
to the standard collection interfaces are reusable

Oct 19, 2022 Sprenkle - CSCI209 16

16

12/1/22

6

EXCEPTIONS

Oct 19, 2022 Sprenkle - CSCI209 17

17

Error Handling
•Programs encounter errors when they run

ØUsers may enter data in the wrong form
ØFile may not exist
ØProgram code has bugs!*

•When an error occurs, a program should do one of
two things:
ØRevert to a stable state and continue
ØAllow the user to save data and then exit the program

gracefully

Oct 19, 2022 Sprenkle - CSCI209 18* (Of course, not your programs)

18

12/1/22

7

Java Method Behavior
•Normal/correct case: return specified return type
•Error case: does not return anything, throws an
Exception
ØAn exception is an event that occurs during execution

of a program that disrupts normal flow of program’s
instructions

ØException: object that encapsulates error
information

Oct 19, 2022 Sprenkle - CSCI209 19Similar to Python

19

Throwable
•All exceptions indirectly derive from Throwable

ØChild classes: Error and Exception
•Important Throwable methods

ØgetMessage()
•Detailed message about error

ØprintStackTrace()
•Prints out where problem occurred and path to reach that point

ØgetStackTrace()
•Get the stack in non-text format

Oct 19, 2022 Sprenkle - CSCI209 20

Error

Throwable

Exception

20

12/1/22

8

Error

Throwable

Exception

Exception Classification: Error
•An internal error
•Strong convention: reserved for JVM
ØJVM-generated when resource exhaustion or an

internal problem
•Example: Out of Memory error

•Program’s code should not and can not throw an
object of this type

•This is an example of an Unchecked exception
Oct 19, 2022 Sprenkle - CSCI209 21

When can that happen in Java?

21

Error

Throwable

Exception

Exception Classification: Exception
1.RuntimeException:

something that happens because of a programming error
ØUnchecked exception
ØExamples: ArrayOutOfBoundsException, NullPointerException,
ClassCastException

2. Checked exceptions
ØA well-written application should anticipate and recover from these

exceptions
ØCompiler enforces that programmer handles them
ØExamples: IOException, SQLException

Oct 19, 2022 Sprenkle - CSCI209 22

22

12/1/22

9

Error

Exception Classification

Oct 19, 2022 Sprenkle - CSCI209 23

Throwable

Exception

IOException
RuntimeException

SQLException

Others…

Unch
eck

ed

Unchecked
Ch

eck
ed

Checked

Checked: All non-
RuntimeExceptions

In java.lang
package

23

Categories of Exceptions
Unchecked
• Any exception that derives from
Error or RuntimeException

• Programmer does not necessarily
create/handle

• Try to prevent RuntimeExceptions
Ø Often indicates programming error
Ø E.g., precondition violations, not

using API correctly, dividing by 0

Checked
• Any other exception
• For conditions from which caller

can reasonably be expected to
recover

• Compiler-enforced checking
Ø Program MUST handle
Ø Improves reliability*

Oct 19, 2022 Sprenkle - CSCI209 24

24

12/1/22

10

Types of Unchecked Exceptions
1.Derived from the class Error

ØAny line of code can generate because it is an internal JVM
error

ØDon’t worry about what to do if this happens
2.Derived from the class RuntimeException

ØIndicates a bug in the program
ØFix the bug, try to prevent
ØExamples: ArrayOutOfBoundsException,
NullPointerException, ClassCastException

Oct 19, 2022 Sprenkle - CSCI209 25

25

Checked Exceptions
•Need to be handled by your program

ØCompiler-enforced
ØImproves reliability*

•For each method, tell the compiler:
ØWhat the method returns
ØWhat could possibly go wrong

• Advertise the exceptions that a method throws
• Helps users of your interface know what method does and lets

them decide how to handle exceptions

Oct 19, 2022 Sprenkle - CSCI209 26

26

12/1/22

11

THROWING EXCEPTIONS

Oct 19, 2022 Sprenkle - CSCI209 27

27

Methods and Exceptions Example
•BufferedReader has method readLine()

ØReads a line from a stream, such as a file or network
connection

•Method header:

•Interpreting the header: readLine will
Øreturn a String (if everything went right)
Øthrow an IOException (if something went wrong)

Oct 19, 2022 Sprenkle - CSCI209 28

public String readLine() throws IOException

Part of Advertising

28

12/1/22

12

Advertising Checked Exceptions
•Advertising in Javadoc: document under what

conditions each exception is thrown
Ø@throws tag

•Examples of when your method should advertise the
checked exceptions that it may throw
ØYour method calls a method that throws a checked

exception
ØYour method detects an error in its processing and decides

to throw an exception
Oct 19, 2022 Sprenkle - CSCI209 29

29

Example: Passing an Exception “Up”

• readData calls readLine, which can throw an IOException
• If readLine throws this exception to our method

ØreadData throws the exception as well
ØWhoever calls readData will handle exception

Oct 19, 2022 Sprenkle - CSCI209 30

public String readData(BufferedReader in)
throws IOException {

String str1 = in.readLine();
return str1;

} Throws an IOException

30

12/1/22

13

Example: Throwing An Exception We Created
1.Create a new object of class
IllegalArgumentException
ØClass derived from RuntimeException

2.throw it
ØMethod ends at this point
ØCalling method handles exception

Oct 19, 2022 Sprenkle - CSCI209 31

if (grade < 0 || grade > 100) {
throw new IllegalArgumentException();

}
Equivalent in Python?

31

A More Descriptive Exception
•Four constructors for most Exception classes

ØDefault (no parameters)
ØTakes a String message

• Describe the condition that generated this exception more fully
Ø2 more

Oct 19, 2022 Sprenkle - CSCI209 32

Best messages include all state that could have contributed to the problem

if (grade < 0 || grade > 100) {
throw new IllegalArgumentException(

"Grade is not in valid range (0-100)");
}

32

12/1/22

14

Common Exception Classes

• Both inherit from RuntimeException
• May seem like these cover everything but only used for certain

kinds of illegal arguments and exceptions
• Not used when

ØA null argument passed in; should be a NullPointerException
ØPass in invalid index for an array; should be an
IndexOutOfBoundsException

Oct 19, 2022 Sprenkle - CSCI209 33

Name Purpose
IllegalArgumentException When caller passes in inappropriate argument

IllegalStateException Invocation is illegal because of receiving object’s state.
(Ex: closing a closed window)

33

Birthday Error Handling Discussion
•Design decision:

ØSince month and day are not independent, should be set
together rather than separately

•Check all the error cases before setting the instance
variables
ØDon’t want an inconsistent resulting birthday

•IllegalArgumentException is appropriate
ØProgramming error
ØShould catch those errors before executing program

Oct 19, 2022 Sprenkle - CSCI209 34

34

12/1/22

15

Goal: Failure Atomicity
•After an object throws an exception, the object

should be in a well-defined, usable state
ØA failed method invocation should leave object in state

prior to invocation
•Approaches:

ØCheck parameters/state before performing operation(s)
ØDo the failure-prone operations first
ØUse recovery code to “rollback” state
ØApply to temporary object first, then copy over values

Oct 19, 2022 Sprenkle - CSCI209 35

35

Javadoc Guidelines about @throws
•Always report if throw checked exceptions
•Report any unchecked exceptions that the caller

might reasonably want to catch
ØException: NullPointerException
ØAllows caller to handle (or not)
ØDocument exceptions that are independent of the

underlying implementation
•Errors should not be documented as they are

unpredictable

Oct 19, 2022 Sprenkle - CSCI209 36

36

12/1/22

16

Oct 19, 2022 Sprenkle - CSCI209 37

37

•Open source integrated development environment
(IDE) for Java

•Described as “an open extensible IDE for anything
and nothing in particular”

•Provides a robust Java development environment
•Incorporates popular software development tools

like JUnit and git
•Plugins allow extensibility

https://www.eclipse.org/

Oct 19, 2022 Sprenkle - CSCI209 38

38

12/1/22

17

Project/Code Organization
• workspace directory contains all projects
ØLocated in your home directory, unless you specified

otherwise
•Use projects to organize your code
•Within a project
Øsrc/ directory contains .java files
Øbin/ directory contains .class files
•Often hidden in GUI

Oct 19, 2022 Sprenkle - CSCI209 39

39

Java Made Easier
• Creating class’s basic functionality

Ø See Source and Refactor menus
• Gives you a list of methods for an object

Ø After you type object.
Ø Then shows parameters for methods

• Automatically creates template of Javadoc
Ø When you type /**

• Autocompletion of variables, methods
• Formatting code …
• Shows unused fields/variables
• Shows compiler errors
• …

Oct 19, 2022 Sprenkle - CSCI209 40

40

12/1/22

18

Eclipse Demo
• Create a new Birthday class

Ø Generate main method,
Comments

• Demonstrate Source menu
Ø Generate constructor, toString
Ø Override equals method

• Create a String object, see
methods used

• Demonstrate Refactor menu
Ø Rename a field
Ø Extract a method (month name)

• Run the Birthday Class (main)
Ø Command line arguments

• Using git

Oct 19, 2022 Sprenkle - CSCI209 41

Why can a Java IDE provide
this functionality?

41

Eclipse Hints
•After you have written a method, type

before the method, and then hit enter and the
Javadocs comment template will be automatically
generated for you
•Use command-spacebar for possible

completions
•Use command-shift-F to format code

Oct 19, 2022 Sprenkle - CSCI209 42

/**

42

12/1/22

19

Eclipse Tradeoffs
• Very helpful – after you know what

you’re doing
Ø You know

• Code is compiled before executed
• Structure of classes
• How to fix errors

• Eclipse can handle the “routine”
for you
Ø That wasn’t “routine” for you a few

weeks ago
Ø Help you focus on the important

design considerations

• Gives suggestions for fixes
Ø You need to think through what the

appropriate fix is
• Sometimes, it’s “I’m not done yet”

Ø Don’t say “Eclipse made me do
<something>”

• Eclipse is a beast (memory hog)
Ø If you have less than ~8GB of

memory, Eclipse will be slow

Oct 19, 2022 Sprenkle - CSCI209 43

43

Looking Ahead
•Eclipse set up for Friday
•Change in Thursday office hours: 10:30 a.m. -

12:30 p.m.
ØUpdated in Canvas site on Calendar

Oct 19, 2022 Sprenkle - CSCI209 44

44

