
10/24/22

1

Objectives
•Exceptions

Oct 21, 2022 Sprenkle - CSCI209 1

1

Review
1. What are the benefits of the Collections Framework?
2. What is an Exception?
3. How do we create Exceptions?
4. How do we advertise that our method may produce an

exception?
5. What are the different categories of exceptions?

Ø What are examples (i.e., class names) of those categories of
exceptions?

6. What is Eclipse? What can it do?
Ø Why did I wait until now to show you Eclipse?

Oct 21, 2022 Sprenkle - CSCI209 2

2

10/24/22

2

Review: Benefits of Collections Framework
• Provides common, well-known interface

Ø Allows interoperability among unrelated APIs
Ø Reduces effort to learn and to use new APIs for different implementations

• Reduces programming effort: provides useful, reusable data structures
and algorithms

• Increases program speed and quality: provides high-performance, high-
quality implementations of data structures and algorithms;
interchangeable implementations à tuning

• Reduces effort to design new APIs: use standard collection interface for
your collection

• Fosters software reuse: New data structures/algorithms that conform
to the standard collection interfaces are reusable

Oct 21, 2022 Sprenkle - CSCI209 3

3

Error

Review: Exception Classification

Oct 21, 2022 Sprenkle - CSCI209 4

Throwable

Exception

IOException
RuntimeException

SQLException

Others…

Unch
eck

ed

Unchecked
Ch

eck
ed

Checked

Checked: All non-
RuntimeExceptions

In java.lang
package

4

10/24/22

3

Review: Methods and Exceptions Example
•BufferedReader has method readLine()

ØReads a line from a stream, such as a file or network
connection

•Method header:

•Interpreting the header: readLine will
Øreturn a String (if everything went right)
Øthrow an IOException (if something went wrong)

Oct 21, 2022 Sprenkle - CSCI209 5

public String readLine() throws IOException

Part of Advertising

5

Example: Passing an Exception “Up”

• readData calls readLine, which can throw an IOException
• If readLine throws this exception to our method

ØreadData throws the exception as well
ØWhoever calls readData will handle exception

Oct 21, 2022 Sprenkle - CSCI209 6

public String readData(BufferedReader in)
throws IOException {

String str1 = in.readLine();
return str1;

} Throws an IOException

6

10/24/22

4

Example: Throwing An Exception We Created
1.Create a new object of class
IllegalArgumentException
ØClass derived from RuntimeException

2.throw it
ØMethod ends at this point
ØCalling method handles exception

Oct 21, 2022 Sprenkle - CSCI209 7

if (grade < 0 || grade > 100) {
throw new IllegalArgumentException();

}
Equivalent in Python?

7

Goal: Failure Atomicity
•After an object throws an exception, the object

should be in a well-defined, usable state
ØA failed method invocation should leave object in state

prior to invocation
•Approaches:

ØCheck parameters/state before performing operation(s)
ØDo the failure-prone operations first
ØUse recovery code to “rollback” state
ØApply to temporary object first, then copy over values

Oct 21, 2022 Sprenkle - CSCI209 8

8

10/24/22

5

Javadoc Guidelines about @throws
•Always report if throw checked exceptions
•Report any unchecked exceptions that the caller

might reasonably want to catch
ØException: NullPointerException
ØAllows caller to handle (or not)
ØDocument exceptions that are independent of the

underlying implementation
•Errors should not be documented as they are

unpredictable

Oct 21, 2022 Sprenkle - CSCI209 9

9

Eclipse Tradeoffs
• Very helpful – after you know what

you’re doing
Ø You know

• Code is compiled before executed
• Structure of classes
• How to fix errors

• Eclipse can handle the “routine”
for you
Ø That wasn’t “routine” for you a few

weeks ago
Ø Help you focus on the important

design considerations

• Gives suggestions for fixes
Ø You need to think through what the

appropriate fix is
• Sometimes, it’s “I’m not done yet”

Ø Don’t say “Eclipse made me do
<something>”

• Eclipse is a beast (memory hog)
Ø If you have less than ~8GB of

memory, Eclipse will be slow

Oct 21, 2022 Sprenkle - CSCI209 10

10

10/24/22

6

HANDLING EXCEPTIONS

Oct 21, 2022 Sprenkle - CSCI209 11

11

Handling Exceptions
•After an exception is thrown, some part of

program needs to catch it
•What does it mean to catch an exception?
ØProgram knows how to deal with the situation that

caused the exception
ØHandles the problem—hopefully gracefully, without

exiting

Oct 21, 2022 Sprenkle - CSCI209 12

12

10/24/22

7

Handling Exceptions
•JVM’s exception-handling mechanism searches

for an exception handler—the error recovery
code
ØException handler deals with

a particular exception
ØSearches call stack for a

method that can handle
(or catch) the exception

1

2

3

4

Call Stack

Search order for handler

Oct 21, 2022 Sprenkle - CSCI209 13

13

Try/Catch Block
•The simplest way to catch an exception
•Syntax:

Oct 21, 2022 Sprenkle - CSCI209 14

try {
code;
more code;

}
catch (ExceptionType e) {

error code for ExceptionType;
}
catch (ExceptionType2 e) {

error code for ExceptionType2;
}
…

Python equivalent?

14

10/24/22

8

Try/Catch Block
•Code in try block runs first
•If try block completes without

an exception, catch block(s)
are not executed

•If try code generates an exception
ØA catch block runs
ØRemaining code in try block is not executed

•If an exception of a type other than ExceptionType
is thrown inside try block, method exits
immediately*

Oct 21, 2022 Sprenkle - CSCI209 15

try {
code;
more code;

}
catch (ExceptionType e) {

error code for
ExceptionType

}

15

Try/Catch Block
• You can have more than one
catch block
ØTo handle > 1 type of exception

• If exception is not of type
ExceptionType1, falls to
ExceptionType2, and so forth
ØRun the first matching catch block

Oct 21, 2022 Sprenkle - CSCI209 16

try {
code;
more code;

}
catch (ExceptionType e) {

error code for
ExceptionType

}
catch (ExceptionType2 e) {

error code for
ExceptionType2

}

Can catch any exception with Exception e
but won’t have customized messages

16

10/24/22

9

Try/Catch Example

Oct 21, 2022 Sprenkle - CSCI209 17

public void read(BufferedReader in) {
try {

boolean done = false;
while (!done) {

String line=in.readLine();
// above could throw IOException
if (line == null)

done = true;
}

}
catch (IOException ex) {

ex.printStackTrace();
}

}
Prints out stack trace to method call

that caused the error

17

Try/Catch Example

Oct 21, 2022 Sprenkle - CSCI209 18

public void read(BufferedReader in) {
try {

boolean done = false;
while (!done) {

String line=in.readLine();
// above could throw IOException
if (line == null)

done = true;
}

}
catch (IOException ex) {

ex.printStackTrace();
}

}
More precise (child Exception class) catch may help pinpoint error

But could result in messier code

18

10/24/22

10

The finally Block

•Allows you to clean up or do maintenance before
method ends (one way or the other)
ØE.g., closing files or database connections

Oct 21, 2022 Sprenkle - CSCI209 19

try {
…

}
catch (Exception e) {

…
}
finally {

…
}

•Optional: add a finally block after
all catch blocks
ØCode in finally block always runs

after code in try and/or catch blocks
•After try block finishes or, if an exception

occurs, after the catch block finishes

FinallyTest.java

19

Practice: try/catch/finally Blocks
•Which statements run if:

1. Neither statement1 nor
statement2 throws an
exception

2. statement1 throws an
EOFException

3. statement2 throws an
EOFException

4. statement1 throws an
IOException

Oct 21, 2022 Sprenkle - CSCI209 20

try {
statement1;
statement2;

}
catch (EOFException e) {

statement3;
statement4;

}
finally {

statement5;
}

20

10/24/22

11

Practice: try/catch/finally Blocks
• Which statements run if:

1. Neither statement1 nor
statement2 throws an exception
• 1, 2, 5

2. statement1 throws an
EOFException
• 1,3,4,5

3. statement2 throws an
EOFException
• 1,2,3,4,5

4. statement1 throws an
IOException
• 1,5

Oct 21, 2022 Sprenkle - CSCI209 21

try {
statement1;
statement2;

}
catch (EOFException e) {

statement3;
statement4;

}
finally {

statement5;
}

21

Fun Fact: Python also has finally

Oct 21, 2022 Sprenkle - CSCI209 22

def divide(x, y):
try:

result = x / y
except ZeroDivisionError:

print("division by zero!")
else:

print("result is", result)
finally:

print("executing finally clause")

https://docs.python.org/3/tutorial/errors.html

22

10/24/22

12

Fun Fact: Python also has finally

Oct 21, 2022 Sprenkle - CSCI209 23

def divide(x, y):
try:

result = x / y
except ZeroDivisionError:

print("division by zero!")
else:

print("result is", result)
finally:

print("executing finally clause")

https://docs.python.org/3/tutorial/errors.html

>>> divide(2, 1)
result is 2.0
executing finally clause
>>> divide(2, 0)
division by zero!
executing finally clause
>>> divide("2", "1")
executing finally clause
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in divide
TypeError: unsupported operand
type(s) for /: 'str' and 'str'

23

Catching More Than One Exception Type
•Can catch multiple exception types in one catch block

Oct 21, 2022 Sprenkle - CSCI209 24

try {
statement1;
statement2;

}
catch (EOFException | SQLException e) {

statement3;
statement4;

}
finally {

statement5;
}

24

10/24/22

13

What to do with a Caught Exception?
•Print/log the stack after the exception occurs

Oct 21, 2022 Sprenkle - CSCI209 25

How helpful is this output?
How user friendly is it?

java.io.FileNotFoundException: fred.txt
at java.io.FileInputStream.<init>(FileInputStream.java)
at java.io.FileInputStream.<init>(FileInputStream.java)
at ExTest.readMyFile(ExTest.java:19)
at ExTest.main(ExTest.java:7)

25

What to do with a Caught Exception?
•Print/log the stack after the exception occurs
ØBut, what else can we do?

•Generally, two options:
1. Catch the exception and recover from it
2. Pass exception up to whoever called it

Oct 21, 2022 Sprenkle - CSCI209 26

26

10/24/22

14

Summary: Methods Throwing Exceptions
•API documentation tells you if a method can throw

an exception
ØIf so, you must handle it

•If your method could possibly throw an exception
(by generating it or by calling another method that
could), advertise it!
ØIf you can’t handle every error, that’s OK…let whoever is

calling you worry about it
ØHowever, they can only handle the error if you advertise

the exceptions you can’t deal with
Oct 21, 2022 Sprenkle - CSCI209 30

30

Programming with Exceptions
• Exception handling is slow
• Group relevant code together

ØScope of try/catch block should be small
• Use one big try block instead of

nesting try-catch blocks
ØSpeeds up Exception Handling
ØOtherwise, code gets too messy

• Don't ignore exceptions (e.g., catch
block does nothing)
ØBetter to pass them along to higher calls

Oct 21, 2022 Sprenkle - CSCI209 31

try {
}
catch () {
}
try {
}
catch () {
}

try {
try {
}
catch () {
}

}
catch () {
}

try {
…
…

}
catch () {
}

31

10/24/22

15

Creating Custom Exception Class
•Try to reuse an existing exception
ØMatch in name as well as semantics

•If you cannot find a predefined Java Exception
class that describes your condition, implement a
new Exception class

Oct 21, 2022 Sprenkle - CSCI209 32

32

Discussion: Benefits of Exceptions
•Been talking about details…
•Why does Java have exceptions as part of the

language?

Oct 21, 2022 Sprenkle - CSCI209 36

36

10/24/22

16

Benefits of Exceptions
• Force error checking/handling

ØOtherwise, won’t compile
ØDoes not guarantee “good” exception handling

• Ease debugging
ØStack trace

• Separates error-handling code from “regular” code
ØError code is in catch blocks at end
ØDescriptive messages with exceptions

• Propagate methods up call stack
ØLet whoever “cares” about error handle it

• Group and differentiate error types
Oct 21, 2022 Sprenkle - CSCI209 37

37

Exceptions Summary
•Try to prevent Runtime Exceptions
•Throw Exceptions in your code for improved

error handling/robustness
•If your code calls a method that throws an

exception
ØCatch the exception if you can handle it well OR
ØThrow the exception to whoever called you and let

them handle it
Oct 24, 2022 Sprenkle - CSCI209 38

38

10/24/22

17

Extra Credit Opportunity

Oct 21, 2022 Sprenkle - CSCI209 39Post summary on Canvas discussion forum
39

Assignment 5
•Practicing with Eclipse
•Inheritance, Collections
•Due next Friday

Oct 21, 2022 Sprenkle - CSCI209 40

40

