
10/24/22

1

Objectives
•Representing Files
•Streams
ØByte Streams
ØText Streams
ØConnected Streams

Oct 24, 2022 Sprenkle - CSCI209 1

1

Review
1. If your code calls a method that can throw an

exception, how can you handle it?
Ø (Two options)

2. What are benefits of exceptions?
3. How do we make a block of code execute

regardless of whether some code threw an
exception or not?

Oct 24, 2022 Sprenkle - CSCI209 2

2

10/24/22

2

Review: Benefits of Exceptions
• Force error checking/handling

ØOtherwise, won’t compile
ØDoes not guarantee “good” exception handling

• Ease debugging
ØStack trace

• Separates error-handling code from “regular” code
ØError code is in catch blocks at end
ØDescriptive messages with exceptions

• Propagate methods up call stack
ØLet whoever “cares” about error handle it

• Group and differentiate error types
Oct 24, 2022 Sprenkle - CSCI209 3

3

Exceptions Summary
•Try to prevent Runtime Exceptions
•Throw Exceptions in your code for improved

error handling/robustness
•If your code calls a method that throws an

exception
ØCatch the exception if you can handle it well OR
ØThrow the exception to whoever called you and let

them handle it
Oct 24, 2022 Sprenkle - CSCI209 4

4

10/24/22

3

FILES

Oct 24, 2022 Sprenkle - CSCI209 5

5

java.io.File Class
•Represents a file or directory
•Provides functionality such as
ØStorage of the file on the disk
ØDetermine if a particular file exists
ØWhen file was last modified
ØRename file
ØRemove/delete file
Ø…

Oct 24, 2022 Sprenkle - CSCI209 6

6

10/24/22

4

Making a File Object
•Simplest constructor takes full file name (including

path)
ØIf don’t supply path, Java assumes current directory (.)

ØCreates a File object representing a file named
“chicken.data” in the current directory

ØDoes not create a file with this name on disk
•Similar to Python:

Oct 24, 2022 Sprenkle - CSCI209 7

File myFile = new File("chicken.data");

myFile = open("chicken.data")

7

Files, Directories, and Useful Methods
•A File object can represent a file or a directory
ØDirectories are special files in most modern operating

systems

•Use isDirectory() and/or isFile() for type of
file File object represents

•Use exists() method
ØDetermines if a file exists on the disk

Oct 24, 2022 Sprenkle - CSCI209 8
In Python, functionality are in the os.path module

8

10/24/22

5

More File Constructors
•String for the path, String for filename

•File for directory, String for filename

Oct 24, 2022 Sprenkle - CSCI209 9

File myFile = new File("/csdept/courses/cs209/handouts",
"chicken.data");

File myDir = new File("/csdept/courses/cs209/handouts");
File myFile = new File(myDir, "chicken.data");

Does this “break” any of Java’s principles?

9

“Break” any of Java’s Principles?
•Principle of Portability

ØWrite and Compile Once, Run Anywhere
•Problem: file paths are OS-specific
•java.io.File.separator

ØOSX/Linux: /
ØWindows: \

•Takeaways:
ØUse relative paths
ØUse configuration files to set paths

Oct 24, 2022 Sprenkle - CSCI209 10

10

10/24/22

6

java.io.File Class
•25+ methods
ØManipulate files and directories
ØCreating and removing directories
ØMaking, renaming, and deleting files
ØInformation about file (size, last modified)
ØCreating temporary files
Ø…

•See online API documentation
Oct 24, 2022 Sprenkle - CSCI209 11FileTest.java

11

STREAMS
A design case study

Oct 24, 2022 Sprenkle - CSCI209 12

12

10/24/22

7

Streams

Oct 24, 2022 Sprenkle - CSCI209 13

input stream: an object from which we can read a sequence of bytes
abstract class: java.io.InputStream

The image part with relationship ID rId3 was not found in
the file.

Java handles input/output using streams,
which are sequences of bytes

13

Streams

Oct 24, 2022 Sprenkle - CSCI209 14

output stream: an object to which we can write a sequence of bytes
abstract class: java.io.OutputStream

Java handles input/output using streams,
which are sequences of bytes

14

10/24/22

8

Java Streams
•MANY (80+) types of Java streams
•In java.io package
•Why stream abstraction?

ØInformation stored in different sources is accessed in
essentially the same way
• Example sources: file, on a web server across the network, string

ØAllows same methods to read or write data, regardless
of its source
• Create an InputStream or OutputStream of the

appropriate type

Oct 24, 2022 Sprenkle - CSCI209 15

15

java.io Classes Overview
•Two categories of stream classes, based on

datatype: Byte, Text
•Abstract base classes for binary data:

•Abstract base classes for text data:

Oct 24, 2022 Sprenkle - CSCI209 16

InputStream OutputStream

Reader Writer

16

10/24/22

9

Byte Streams: For Binary Data

Abstract Base Classes

Oct 24, 2022 Sprenkle - CSCI209 17

Shaded: Read from/write to source
White: Does some processing

In java.io package

17

Character Streams: For Text

Abstract Base Classes

Oct 24, 2022 Sprenkle - CSCI209 18

• In java.io package
• Handle any character in

Unicode set

Shaded: Read from/write to source
White: Does some processing

18

10/24/22

10

Console I/O: Streams!
•Output:

ØSystem.out and System.err are PrintStream
objects

•Input
ØSystem.in is an InputStream object
ØThrows exceptions if errors when reading
•Handle in try/catch

Oct 24, 2022 Sprenkle - CSCI209 19

19

Opening & Closing Streams
•Streams are automatically opened when

constructed

•Close a stream by calling its close() method
ØClose a stream as soon as object is done with it
ØFree up system resources

Oct 24, 2022 Sprenkle - CSCI209 20

20

10/24/22

11

Reading & Writing Bytes
•Abstract parent class: InputStream

Øabstract int read()
• reads one byte from the stream and returns it

ØConcrete child classes override read() to provide
appropriate functionality
• e.g., FileInputStream’s read() reads one byte from a file

•Similarly, OutputStream class has abstract
write() to write a byte to the stream

Oct 24, 2022 Sprenkle - CSCI209 21

21

File Input and Output Streams
•FileInputStream: provides an input stream

that can read from a file
ØConstructor takes the name of the file:

ØOr, uses a File object …

Oct 24, 2022 Sprenkle - CSCI209 23

FileInputStream fin = new FileInputStream("chicken.data");

File inputFile = new File("chicken.data");
FileInputStream fin = new FileInputStream(inputFile);

FileTest.java
23

10/24/22

12

More Powerful Stream Objects
• DataInputStream

ØReads Java primitive types
through methods such as
readDouble(), readChar(),
readBoolean()

• DataOutputStream
ØWrites Java primitive types with
writeDouble(),
writeChar(),
writeBoolean(), …

Oct 24, 2022 Sprenkle - CSCI209 24

24

Connected Streams

•FileInputStream can read from a file but has no
methods to read numeric types

•DataInputStream can read numeric types but has
no methods to read from a file

•Java allows you to combine two types of streams
into a connected stream
ØFileInputStreamà chocolate
ØDataInputStreamà peanut butter

Oct 24, 2022 Sprenkle - CSCI209 25

Our goal: read numbers from a file

25

10/24/22

13

Connected Streams
• Think of a stream as a pipe
• FileInputStream knows how to read from a file
• DataInputStream knows how to read an InputStream into useful

types
• Connect out end of FileInputStream to in end of
DataInputStream…

Oct 24, 2022 Sprenkle - CSCI209 26

FileInputStream DataInputStream
double

char
file

Data Source stream
Filtered Stream

Reads from a stream

26

Connecting Streams
• If we want to read numbers from a file

ØFileInputStream reads bytes from file
ØDataInputStream handles numeric type reading

• Connect the DataInputStream to the FileInputStream
ØFileInputStream gets the bytes from the file and DataInputStream

reads them as assembled types

Oct 24, 2022 Sprenkle - CSCI209 27

FileInputStream fin = new FileInputStream("chicken.data");
DataInputStream din = new DataInputStream(fin);

double num1 = din.readDouble();
“wrap” fin in din

DataIODemo.java
27

10/24/22

14

Data Source vs. Filtered Streams

Data Source Streams
• Communicate with a data source

Ø file, byte array, network socket, or
URL

Filtered Streams
• Subclasses of
FilterInputStream or
FilterOutputStream

• Always contains/connects to
another stream

• Adds functionality to other stream
Ø Automatically buffered IO
Ø Automatic compression
Ø Automatic encryption
Ø Automatic conversion between

objects and bytes

Oct 24, 2022 Sprenkle - CSCI209 28

28

Another Filtered Stream: Buffered Streams
•BufferedInputStream buffers your input

streams
ØA pipe in the chain that adds bufferingà speeds up

access

Oct 24, 2022 Sprenkle - CSCI209 29

DataInputStream din = new DataInputStream (
new BufferedInputStream (

new FileInputStream("chicken.data")));

FileInputStream
double

char
file BufferedInputStream

Review: What functionality does each stream add?

DataInputStream

29

10/24/22

15

Connected Streams: Similar for Output
•Example: for buffered output to the file and to

write types
ØCreate a FileOutputStream
ØAttach a BufferedOutputStream
ØAttach a DataOutputStream
ØPerform typed writing using methods of the
DataOutputStream object

Oct 24, 2022 Sprenkle - CSCI209 30

Combine different types of streams
to get functionality you want

30

TEXT STREAMS

Oct 24, 2022 Sprenkle - CSCI209 31

31

10/24/22

16

Text Streams
•Previous streams: operate on binary data, not

text
•Java uses Unicode to represent characters/strings

and some operating systems do not
ØNeed something that converts characters from

Unicode to whatever encoding the underlying
operating system uses

ØLuckily, this is mostly hidden from you

Oct 24, 2022 Sprenkle - CSCI209 32

32

Character Streams: For Text

Abstract Base Classes

Oct 24, 2022 Sprenkle - CSCI209 33

Shaded: Read from/write to source
White: Does some processing

• In java.io package
• Handle any character in

Unicode set

33

10/24/22

17

Text Streams
•Derived from Reader and Writer classes
ØReader and Writer generally refer to text I/O

•Example: Make an input reader of type
InputStreamReader that reads from keyboard

Øin reads characters from keyboard and converts
them into Unicode for Java

Oct 24, 2022 Sprenkle - CSCI209 34

InputStreamReader in = new InputStreamReader(System.in);

34

Text Streams and Encodings
•Attach an InputStreamReader to a
FileInputStream

ØAssumes file has been encoded in the default
encoding of underlying OS

•Can specify a different encoding in constructor of
InputStreamReader

Oct 24, 2022 Sprenkle - CSCI209 35

InputStreamReader in = new InputStreamReader(
new FileInputStream("employee.data"));

InputStreamReader in = new InputStreamReader(
new FileInputStream("employee.data"), "UTF-8");

35

10/24/22

18

Convenience Classes: Common Combinations
•Reading and writing to text files is common
•FileReader
ØConvenience class combines a InputStreamReader

with a FileInputStream
•Similar for output to text file

is equivalent to

Oct 24, 2022 Sprenkle - CSCI209 36

FileWriter out = new FileWriter("output.txt");

OutputStreamWriter out = new OutputStreamWriter(
new FileOutputStream("output.txt"));

36

PrintWriter
•Easiest writer to use for writing text output
•Has methods for printing various data types
Øsimilar to a DataOutputStream, PrintStream

•Methods: print, printf and println
ØSimilar to System.out (a PrintStream) to display

strings

Oct 24, 2022 Sprenkle - CSCI209 37

37

10/24/22

19

PrintWriter Example

Oct 24, 2022 Sprenkle - CSCI209 38

PrintWriter out = new PrintWriter("output.txt");

String myName = "Homer Simpson";
double mySalary = 35700;

out.print(myName);
out.print(" makes ");
out.print(salary);
out.println(" per year.");

or
out.println(myName + " makes " + salary +

" per year.");

File to write to

38

Review: Formatted Output
•printf or format

Oct 24, 2022 Sprenkle - CSCI209 39

double f1=3.14159, f2=1.45, total=9.43;
// simple formatting...
System.out.printf("%6.5f and %5.2f", f1, f2);
// getting fancy (%n = \n or \r\n)...
System.out.printf("%-6s%5.2f%\n", "Tax:", total);

39

10/24/22

20

Reading Text from a Stream: BufferedReader

•There is no PrintReader class
•Constructor requires a Reader object

•Read file, line-by-line using readLine()
ØReads in a line of text and returns it as a String
ØReturns null when no more input is available

Oct 24, 2022 Sprenkle - CSCI209 41

String line;
while ((line = in.readLine()) != null) {

// process the line
}

BufferedReader in = new BufferedReader(new FileReader("myfile.txt"));

41

Reading Text from a Stream
•You can attach a BufferedReader to an
InputStreamReader:

•Used to be the best way to read from the console
Oct 24, 2022 Sprenkle - CSCI209 42

BufferedReader consoleReader= new BufferedReader(
new InputStreamReader(System.in));

BufferedReader webpageReader = new BufferedReader(
new InputStreamReader(url.openStream());

Note how easy it is to read from different sources

42

10/24/22

21

Scanners
•Scanners do not throw IOExceptions!

ØFor a simple console program, main() does not have to
deal with or throw IOExceptions

ØHandling those [checked] exceptions is required with
BufferedReader/InputStreamReader combination

•Throws InputMismatchException when token
doesn’t match pattern for expected type
Øe.g., nextLong() called with next token “AAA”
ØNo catching required

Oct 24, 2022 Sprenkle - CSCI209 43

Meaning it is what type of exception?
How do you prevent errors in Scanner?

43

Scanners
•Scanners do not throw IOExceptions!

ØFor a simple console program, main() does not have to
deal with or throw IOExceptions

ØHandling those [checked] exceptions is required with
BufferedReader/InputStreamReader combination

•Throws InputMismatchException when token
doesn’t match pattern for expected type
Øe.g., nextLong() called with next token “AAA”
ØRuntimeException (no catching required)

Oct 24, 2022 Sprenkle - CSCI209 44How do you prevent such errors?

44

10/24/22

22

Preventing Scanner Runtime Exceptions
•Methods to check before reading, e.g.
hasNextLong()

•Example code excerpt

Oct 24, 2022 Sprenkle - CSCI209 45

Scanner sc = new Scanner(System.in);
System.out.print("Enter a long: ");
while(! sc.hasNextLong()) {

System.out.println("Oops, that's not a long.");
sc.nextLine(); // read in what they (incorrectly) entered
System.out.print("Enter a long: ");

}
long myLong = sc.nextLong();
System.out.println("You entered " + myLong);
sc.close();

45

Summary: Streams
•Abstraction: streams – sequences of data
•Two categories of classes based on type of data they

handle
ØBytes: InputStream OutputStream
ØText: Reader Writer

•Two categories of classes based on their source
ØData Source (primary source)
ØFiltered (another stream)

Oct 24, 2022 Sprenkle - CSCI209 47

47

10/24/22

23

Summary: Using Streams
•Can combine streams to get the custom functionality

you want
ØConvenience classes for some common combinations

•Development decisions: What do I want this stream
to do?
ØWhat kind of data is it dealing with?
ØWhat filtering/functionality do I want?

•Select the streams that provide that functionality
and connect them (or use convenience class)

Oct 24, 2022 Sprenkle - CSCI209 48

48

Discussion: Stream Design Decisions
•Java’s Streams
ØCombine different types of streams to get

functionality you want
ØProvide convenience classes for common functionality

Oct 24, 2022 Sprenkle - CSCI209 49

What are the tradeoffs for this design decision?
• What would the alternatives be?
• Consider if you maintained the Java libraries
• Consider as a user of those Java libraries

49

10/24/22

24

Discussion: Stream Design Decisions

Oct 24, 2022 Sprenkle - CSCI209 50

FileIS Buffered
IS

Compress
ionIS

Encrypted
IS

Current Design: Alternative Design:
Those classes + all the combinations

Buffered
FileIS

Compress
FileIS

Encrypted
FileIS

Encrypted
Compress
FileIS

Buffered
Encrypted
FileIS

Buffered
Encrypted
Compress
FileIS…

What happens when functionality changes?
New functionality added?

50

Discussion: Stream Design Decisions

•Alternative: Creating a class for every combination
would result in even more classes and a lot of
redundant code
ØConsider what is required if some functionality must be

updated
ØTricky for user to pull together various streams BUT also

would be hard to find the class you want that has the right
combination of functionality

Oct 24, 2022 Sprenkle - CSCI209 51

Combine different types of streams
to get functionality you want

51

10/24/22

25

Extra Credit Opportunity

Oct 24, 2022 Sprenkle - CSCI209 52Post summary on Canvas discussion forum
52

Assignment 5
•Practicing with Eclipse
•Inheritance, Collections
•Due Friday

Oct 24, 2022 Sprenkle - CSCI209 53

53

