
10/26/22

1

Objectives
•Java Wrap Up
ØCompiler optimizations
ØComparing with Python

Oct 26, 2022 Sprenkle - CSCI209 1

1

Review
1.What is a stream?
2.What are 3 different ways to categorize Java stream

classes?
3.What design decisions did Java make in creating

streams and what are the tradeoffs of those
decisions?

4.What does the compiler do?
Ø How is compiling different from interpreting?

Oct 26, 2022 Sprenkle - CSCI209 2

2

10/26/22

2

Summary: Streams
•Abstraction: streams – sequences of data
•Two categories of classes based on type of data they

handle
ØBytes: InputStream OutputStream
ØText: Reader Writer

•Two categories of classes based on their source
ØData Source (primary source)
ØFiltered (another stream)

Oct 26, 2022 Sprenkle - CSCI209 3

3

Summary: Using Streams
•Can combine streams to get the custom functionality

you want
ØConvenience classes for some common combinations

•Development decisions: What do I want this stream
to do?
ØWhat kind of data is it dealing with?
ØWhat filtering/functionality do I want?

•Select the streams that provide that functionality
and connect them (or use convenience class)

Oct 26, 2022 Sprenkle - CSCI209 4

4

10/26/22

3

Discussion: Stream Design Decisions

•Alternative: Creating a class for every combination
would result in even more classes and a lot of
redundant code
ØConsider what is required if some functionality must be

updated
ØTricky for user to pull together various streams BUT also

would be hard to find the class you want that has the right
combination of functionality

Oct 26, 2022 Sprenkle - CSCI209 5

Combine different types of streams
to get functionality you want

5

COMPILATION

Oct 26, 2022 Sprenkle - CSCI209 6

6

10/26/22

4

Review
•What does the compiler do?
•How is compiling different from interpreting?

Oct 26, 2022 Sprenkle - CSCI209 7

7

Compiling
• Translates high-level programming language to machine code or byte

code
Ø Java: .java à .class == bytecode
Ø Holistic view of the program

• Compiler optimization techniques
Ø Generate efficient bytecode/machine code
Ø Examples: get rid of unused local variables, transform loops, inline method

calls
Ø In Java: static typing for additional gains

• Can execute generated code multiple times
Ø Performance gain
Ø Interpreted à have to re-verify the code each time executed

Oct 26, 2022 Sprenkle - CSCI209 8

8

10/26/22

5

Compiled vs Interpreted Languages
Compiled
- Spends a lot of time analyzing and

processing the program
• Resulting executable is some form

of machine- specific binary code
• Computer hardware interprets

(executes) resulting code
üProgram execution is fast

Ø Efficient machine/byte code
generation

Ø Performance gains

Interpreted
üRelatively little time spent analyzing

and processing the program
• Resulting code is some sort of

intermediate code
• Another program interprets

resulting code
- Program execution is relatively slow
üFaster development/prototyping

Oct 26, 2022 Sprenkle - CSCI209 9

In pure forms

9

Python Interpreter
1. Validates Python programming language expression(s)

• Enforces Python syntax rules
• Reports syntax errors

2. Executes expression(s)

Oct 26, 2022 Sprenkle - CSCI209 10

Interpreter
(python)

Python
expression

Output Executable
bytecode

Only if no syntax errors

(not pure interpreting)

Caches compiled byte code
in __pycache__

10

10/26/22

6

Compiler
(javac)

Java Compiler

•Lexical analysis, parsing, semantic analysis, code
generation, and code optimization

•Code optimization: dead code eliminator, inline
expansion, constant propagation, …

Oct 26, 2022 Sprenkle - CSCI209 11

Java
file

Java
class

Source code Executable code

11

Compiler Optimization Examples*
•What is the optimization?
ØHow is the resulting code more efficient?

•For each optimization approach, generally,
Øshould you make these optimizations yourself?
ØOr, is it something that only the compiler should do?
ØKey question: what is likely to change?

Oct 26, 2022 Sprenkle - CSCI209 12

*Not literally what the code optimizations look like
• Optimizations are in byte code
• CSCI210 may help illuminate why these decrease runtime

12

10/26/22

7

Compiler Optimization: Example 1

Oct 26, 2022 Sprenkle - CSCI209 13

for(int i = 0; i < 10; i++) {
int j = 10;
System.out.println(i + ", " + j);

}

int j = 10;
for(int i = 0; i < 10; i++) {

System.out.println(i + ", " + j);
}

for(int i = 0; i < 10; i++) {
System.out.println(i + ", " + 10);

}

Original:

Optimization 1

Optimization 2

13

Compiler Optimization: Example 2

Oct 26, 2022 Sprenkle - CSCI209 14

for(int i = 0; i < 10; i++) {
if(i == 0) {

System.out.println("Do this");
}
else {

System.out.println("Do that");
}

}
System.out.println("Do this");

for(int i = 1; i < 10; i++) {
System.out.println("Do that");

}
System.out.println("Do this");
System.out.println("Do that");
System.out.println("Do that");
System.out.println("Do that");
…

Original:

Optimization 1

Optimization 2

14

10/26/22

8

Compiler Optimization: Example 3

Oct 26, 2022 Sprenkle - CSCI209 15

public void f(int i) {
a[0] = i + 0;
a[1] = i * 0;
a[2] = i - i;
a[3] = 1 + i + 1;

}

public void f(int i) {
a[0] = i;
a[1] = 0;
a[2] = 0;
a[3] = i + 2;

}

Original:

Optimization 1

15

Compiler Optimization: Example 4

Oct 26, 2022 Sprenkle - CSCI209 16

int add(int x, int y) {
return x + y;

}

int sub(int x, int y) {
return add(x, -y);

}
int sub(int x, int y) {

return x + -y;
}

int sub(int x, int y) {
return x - y;

}

Original:

Optimization 1

Optimization 2

add method stays the same

16

10/26/22

9

Compiler Optimization: Example 5

Oct 26, 2022 Sprenkle - CSCI209 17

class Parent {
void final f() {

System.out.println("f");
}

}
for(Parent p : parentArray) {

p.f(); // check p’s actual type at runtime
// and execute its method f

}

for(Parent p : parentArray) {
System.out.println("f");

}

Optimization:

17

Compiler Tradeoffs
•Upfront costs

ØSearching for optimizations
ØMake optimizations

• Typically not Big-O efficiency improvements (unless program is
written really inefficiently)

ØIterative process: make optimizations and then look for
more optimizations

•Improved runtime
ØExpect executed many more times than compiled

Oct 26, 2022 Sprenkle - CSCI209 18

18

10/26/22

10

LANGUAGE COMPARISON

Oct 26, 2022 Sprenkle - CSCI209 19

19

Language Comparison
Java Python

Oct 26, 2022 Sprenkle - CSCI209 20

1) Focus on their characteristics (just the facts, not tradeoffs)
2) Pros and cons, preferences

20

10/26/22

11

Language Comparison
Java
• Entirely Object-oriented*

Ø Procedural
Ø Functional - newer

• Statically, strongly typed
• Compiled

Python
• Object-oriented

Ø Also procedural and functional
programming

• Dynamically, strongly typed
• Interpreted

Oct 26, 2022 Sprenkle - CSCI209 21

Pros and cons of using each?

21

Rest of the Semester
• Shift from learning Java, specifically, to learning how to

develop software (abstractly) with Java as our
implementation/example

• Why Java?
ØPopular language
ØMany frameworks and tools for Java
ØJava’s structure allows for strict adherence to design

techniques
• Just a start on Java

ØYou’ll need to continue learning more Java on your own

Oct 26, 2022 Sprenkle - CSCI209 22

22

10/26/22

12

Looking Ahead
•Friday: Assignment 5

Oct 26, 2022 Sprenkle - CSCI209 23

23

