
10/28/22

1

Objectives
•Software Development
ØAgile

•Testing

Oct 28, 2022 Sprenkle - CSCI209 1

1

Review
1.What does the compiler do?

Ø How is compiling different from interpreting?
2.What are examples of compiler optimizations?
3.True or False: If the compiler is applying lots of code

optimizations to my code, that means I wrote my
code poorly.

4.What is the software testing process, formally?
Ø What are the components?

Oct 28, 2022 Sprenkle - CSCI209 2

2

10/28/22

2

Different Perspectives on the Program
To the Compiler

• This is my one shot to validate the
program and optimize it!

To You/Developer

• The long view: I am compiling the
program now, but I could change the
program later.
Ø It should be easy to update the program;

otherwise, I could introduce bugs.

Oct 28, 2022 Sprenkle - CSCI209 3

3

SOFTWARE DEVELOPMENT

Oct 28, 2022 Sprenkle - CSCI209 4

4

10/28/22

3

Programming is not Software Engineering

•This course is software development…
ØWe’re moving from programming towards software

engineering
ØOne metric: how long you think before you code

Oct 28, 2022 Sprenkle - CSCI209 5

“It's Programming if ‘clever’ is a compliment.
It's Software Engineering if ‘clever’ is an accusation.”

-- Titus Winters, Google Software Engineer

https://twitter.com/tituswinters/status/1143595692113481728

5

No Silver Bullet:
Essence and Accidents of Software Engineering
“Of all the monsters that fill the nightmares of our folklore, none terrify more than
werewolves, because they transform unexpectedly from the familiar into horrors. For
these, one seeks bullets of silver that can magically lay them to rest.

“The familiar software project, at least as seen by the nontechnical manager, has
something of this character; it is usually innocent and straightforward, but is capable of
becoming a monster of missed schedules, blown budgets, and flawed products. So we hear
desperate cries for a silver bullet—something to make software costs drop as rapidly as
computer hardware costs do.

“But, as we look to the horizon of a decade hence, we see no silver bullet. There is no
single development, in either technology or in management technique, that by itself
promises even one order-of-magnitude improvement in productivity, in reliability, in
simplicity. In this article, I shall try to show why, by examining both the nature of the
software problem and the properties of the bullets proposed.”

Oct 28, 2022 Sprenkle - CSCI209 6by Frederick P. Brooks, Jr., 1986

6

10/28/22

4

Software Engineering
•Software Engineering is a relatively new field
ØStill learning best practices

Oct 28, 2022 Sprenkle - CSCI209 8

Takeaway: We will employ lots of techniques that
help make software development process more

efficient without sacrificing software quality

8

How to Implement an Effective Solution
1. Understand the problem
2. Understand external constraints
3. Design an effective solution to the problem
4. While designing the solution, design some tests to

verify that the problem is solved (and remains
solved)

5. Code the effective solution to the problem
6. Teach other team members about your solution to

the problem
Oct 28, 2022 Sprenkle - CSCI209 9

9

10/28/22

5

How to Implement an Effective Solution
1. Understand the problem (interact with people)
2. Understand external constraints (interact with people)
3. Design an effective solution to the problem
4. While designing the solution, design some tests to verify

that the problem is solved (and remains solved)
5. Code the effective solution to the problem
6. Teach other team members about your solution to the

problem (interact with people)

Oct 28, 2022 Sprenkle - CSCI209 10

10

Traditional Software Engineering Process:
Waterfall Model

Oct 28, 2022 Sprenkle - CSCI209 11

Requirements

Design

Implementation

Integration

Acceptance

Release/
Maintenance

Validate at each step
Goal: Each stage is 100% complete
before moving to next step

11

10/28/22

6

Feedback in Waterfall Model

Oct 28, 2022 Sprenkle - CSCI209 12

• Get feedback at each stage
and revisit previous stage if necessary

Requirements

Design

Implementation

Integration

Acceptance

Release/
Maintenance

12

Feedback in Waterfall Model

Oct 28, 2022 Sprenkle - CSCI209 13

• Problems may be revealed
in later stages
• What happens if problems aren’t revealed

until Acceptance?

Requirements

Design

Implementation

Integration

Acceptance

Release/
Maintenance

13

10/28/22

7

Iterative Design

Oct 28, 2022 Sprenkle - CSCI209 14

Design

Evaluate Implement
Get feedback/requirements
from users/clients

Goals: Frequent feedback
àIdentify problems early
àHigher quality product

Various implementations

14

Spiral Model
• Idea: smaller prototypes to

test/fix/throw away
Ø Finding problems early costs less

• In general…
Ø Break functionality into smaller

pieces
Ø Implement most depended-on or

highest-priority features first

Oct 28, 2022 Sprenkle - CSCI209 15

Design

ImplementEvaluate

Prototypes

Radial dimension: cost
[Boehm 86]

15

10/28/22

8

Prototypes, In Brief
•Sample of application
ØOften: Demonstrate one part/purpose
•Focus on one thing, not the whole thing

•Purpose/Dimensions
ØFunctionality
ØInteraction
ØImplementation

Oct 28, 2022 Sprenkle - CSCI209 16

16

Spiral Model/Iterative Design Model Benefits
•Builds in getting feedback from client

ØDemo prototypes or working versions of
[parts of] application

ØClients’ requirements may change
ØClients’ requirements may be ambiguous or were

misinterpreted
•Makes project development more agile

ØGoal: find problems early
ØEasier to throw away cheaper early prototypes
ØAdjust/adapt to changes

Oct 28, 2022 Sprenkle - CSCI209 17

Design

ImplementEvaluate
Pro
tot
yp
es

17

10/28/22

9

Spiral Model: Breaking Down Further
•Project’s development

process: Spiral Model
•What does this look like

day to day?
ØAgile development is a

common implementation

Oct 28, 2022 Sprenkle - CSCI209 18

Design

ImplementEvaluate

Prototypes

Radial dimension: cost
[Boehm 86]

18

Agile Development
•Iterative approach to project management and

software development
ØWork in small, launchable increments
ØFrequent review of requirements, plans, results

•Goals:
ØRespond to change quickly
ØDeliver application faster
ØFewer conflicts about requirements

•Lots of variations – often company- or team-specific
Oct 28, 2022 Sprenkle - CSCI209 19

19

10/28/22

10

Agile Development Framework: Scrum
• Product owner creates prioritized wish list: a product backlog
• Team works in a sprint, usually 2-4 weeks

ØDuring planning, team picks a subset of wish list, a sprint backlog,
and decides how to implement those pieces

ØDaily Scrum: team meets daily to assess its progress
• ScrumMaster keeps the team focused on its goal

ØAt end of sprint, work should be potentially shippable:
• ready to hand to a customer, put on a store shelf, or show to a stakeholder

ØThe sprint ends with a sprint review and retrospective
• Repeat sprint

Oct 28, 2022 Sprenkle - CSCI209 20

https://www.scrumalliance.org/why-scrum

20

Tools to Help: Kanban Board

Oct 28, 2022 Sprenkle - CSCI209 21https://www.digite.com/kanban/what-is-kanban/

• Kanban is
continuous, fluid.
• Focus on short

start to finish time

21

10/28/22

11

Really Zoomed In:
Iterative Development Steps
1. Design a {method, class, package}
2. Implement the {method, class, package}
3. Test the {method, class, package}
4. Fix the {method, class, package}
5. Deploy the {method, class, package}
6. Get feedback

ØProbably will require modifications to design
ØMay even need to rollback a previous version

7. Repeat, building up
Oct 28, 2022 Sprenkle - CSCI209 22

Design

ImplementEvaluate

22

Really Zoomed In:
Iterative Development Steps
1. Design a {method, class, package}
2. Implement the {method, class, package}
3. Test the {method, class, package}
4. Fix the {method, class, package}
5. Deploy the {method, class, package}
6. Get feedback

ØProbably will require modifications to design
ØMay even need to rollback a previous version

7. Repeat, building up
Oct 28, 2022 Sprenkle - CSCI209 23

Design

ImplementEvaluate

23

10/28/22

12

SOFTWARE TESTING PROCESS

Oct 28, 2022 Sprenkle - CSCI209 24

24

Review: Software Testing Process

•Test case: both the input and
the expected output

•Test Suite: set of test cases

Input Program Actual
Output

Test Case

Program
Under Test

Expected
Output ?

pass or fail

25

10/28/22

13

Type 1 Bugs: Compile-Time
•Syntax errors

ØMissing semicolon,
parentheses

•Compiler notifies of error
•Cheap, easy to fix

Oct 28, 2022 Sprenkle - CSCI209 26

26

Type 2 Bugs: Run-Time
•Usually logic errors
•Expensive to locate, fix

Oct 28, 2022 Sprenkle - CSCI209 27

27

10/28/22

14

Aside: Objections to “Bug” Terminology
• “Bug”

Ø Sounds like it’s just an annoyance
• Can simply swat away

Ø Minimizes potential problems
Ø Hides programmer’s responsibility

• Alternative terms
ØDefect
Ø Fault

Oct 28, 2022 Sprenkle - CSCI209 28

28

Tenor of Conversation

•NOT: how do we never write bugs?
ØWe’re human!
ØI mean, don’t try to write bugs/be sloppy…
ØThere’s a balance.

Oct 28, 2022 Sprenkle - CSCI209 29

How do we detect bugs and fix them
before the user sees them?

29

10/28/22

15

Discussion: Your Testing Process
•How do you test?
•Categorize what you test/look for
•Are you a good tester? Why or why not?
ØWhat do you do well?
ØWhat do you need to get better at?

Oct 28, 2022 Sprenkle - CSCI209 30

30

Common Bad Development Approaches
•Run the code. Did it do what you expect? <shrug/>
•Identify bug. Fix the bug on the test case that

revealed the error. Don’t test the other cases.
ØSimilar: made a change to code (famous last words: “it

shouldn’t affect anything”) and don’t retest
•Tests don’t help you identify the problem

ØA good set of tests will help you narrow the scope of the
problem

•Random (only) testing

Oct 28, 2022 Sprenkle - CSCI209 31

31

10/28/22

16

Microsoft Testing
•Beyond their internal testing …
Ø5 million people beta tested
Ø60+ years of performance testing
Ø1 Billion+ Office 2007 sessions

•Still, users found correctness, stability,
robustness, and security bugs

Oct 28, 2022 Sprenkle - CSCI209 32

32

OSS Fuzz Project
•Continuous Fuzzing for Open Source Software
ØFuzzing is a testing technique

•“Google has found thousands of security
vulnerabilities and stability bugs by deploying
guided in-process fuzzing of Chrome
components”

•Also found 40K+ bugs in 600+ projects

Oct 28, 2022 Sprenkle - CSCI209 33

https://github.com/google/oss-fuzz

33

10/28/22

17

Conclusion: Software Testing is Hard!
•Need to use a lot of different approaches
ØDifferent approaches catch different defects

Oct 28, 2022 Sprenkle - CSCI209 34

34

Types of Testing
(Non-Exhaustive)

•Black-box testing

•White-box testing

•Non-functional testing

•Acceptance testing

Oct 28, 2022 Sprenkle - CSCI209 35

Ideas about or definitions of any of these?
What is the approach? Or, what problems are they trying to reveal?

35

10/28/22

18

Types of Testing
(Non-Exhaustive)
• Black-box testing

Ø Test functionality (e.g., the
calculator)

Ø No knowledge of the code
Ø Examples of testing: boundary

values

• White-box testing
Ø Have access to code
ØGoal: execute all code

• Non-functional testing
Ø Performance testing
Ø Usability testing (HCI)
Ø Security testing
Ø Internationalization, localization

• Acceptance testing
Ø Customer tests to decide if they

accept the product

Oct 28, 2022 Sprenkle - CSCI209 36

36

Levels of Testing
• Unit

Ø Tests minimal software component, in isolation
Ø For us, Class-level testing
Ø Web: Web pages (Http Request)

• Integration
Ø Tests interfaces & interaction of classes

• System
Ø Tests that completely integrated system meets requirements

• System Integration
Ø Test system works with other systems, e.g., third-party systems

Sprenkle - CSCI209 37

Cost increases

Oct 28, 2022

37

10/28/22

19

Software Development Process

Oct 28, 2022 Sprenkle - CSCI209 38

38

A Bad Role Model

Oct 28, 2022 Sprenkle - CSCI209 39http://imgur.com/HBSbn

39

10/28/22

20

Software Development Process

Oct 28, 2022 Sprenkle - CSCI209 40

Shift Left’s Goal: Catch defects earlier

40

Software Testing Issues
•How should you test? How often?

ØCode may change frequently
ØCode may depend on others’ code
ØA lot of code to validate

•How do you know that an output is correct?
ØComplex output
ØHuman judgment?

•What caused a code failure?
Oct 28, 2022 Sprenkle - CSCI209 41

➥ Need a systematic, automated,
repeatable approach

41

10/28/22

21

Some Approaches to Testing Methods
•Typical case

ØTest typical values of input/parameters
•Boundary conditions

ØTest at boundaries of input/parameters
ØMany faults live “in corners”

•Parameter validation
ØVerify that parameter and object bounds are documented

and checked
ØExample: pre-condition that parameter isn’t null

Oct 28, 2022 Sprenkle - CSCI209 42➥ All black-box testing approaches

42

Looking Ahead
•Read slides about testing, JUnit before Monday’s

class
ØCanvas quiz

•Goal: Hands-on lab in class on Monday
ØPrep: Clone the repository

Oct 28, 2022 Sprenkle - CSCI209 43

43

