Objectives
® Unit Testing

Oct 31, 2022 Sprenkle - CSCI209

Review

1.Describe the general testing process

2.What is a set of test cases called?

3.What is unit testing?

4.What are the benefits of unit testing?

5.What are the characteristics of good unit tests?

6. What are the steps in a JUnit Test Case?
How do we implement those steps?

/.What is test-driven development?

Oct 31, 2022 Sprenkle - CSCI209

Review: Software Testing Process

Input _ Program l
7
Program
Under Test
Test Case
Expected
Output
® Test Suite: set of test cases pass or fail

Oct 31, 2022 Sprenkle - CSCI209

Review: Why Unit Test?

® Verify code works as intended in isolation

® Find defects early in development
Easier to test small pieces
Less cost than at later stages (e.g., when integrating)
® Suite of (small) test cases to run after code changes

As application evolves, new code is more likely to break
existing code

Also called regression testing

Oct 31, 2022 Sprenkle - CSCI209

Review: Characteristics of Good Unit Testing

® Automatic
Since unit testing is done frequently, don’t want humans slowing the
process down
Automate executing test cases and evaluating results
Input: in test itself or from a file
® Thorough
Covers all code/functionality/cases
® Repeatable
Reproduce results (correct, failures)
® Independent
Test cases are independent from each other
Easier to trace fault to code

Oct 31, 2022 Sprenkle - CSCI209

Review: Structure of a JUnit Test

1. Set up the test case (optional)
Example: Creating objects
@BeforeAll (once per class), @BeforeEach (before each test)

2. Exercise the code under test
Within method annotated with @Test

3. Verify the correctness of the results
Within method annotated with @Test — use assert methods

4. Teardown (optional)

Example: reclaim created objects
@AfterEach (after each test), @AfterAll (once per class)

Oct 31, 2022 Sprenkle - CSCI209

Review: Assert Methods

® Defined in org.junit. jupiter.api.Assertions
Variety of assert methods available

e |f fail, throw an error

® Otherwise, test keeps executing

e All are static void

o Example: assertEquals(Object expected, Object actual)

@Test
public void addTest() {

assertEquals(4, calculator.add(3, 1));

Oct 31, 2022 } 7

Review: Example Testing the CD class

private CD test(D;

@BeforeEach

public void setUp() {
testCD = new CDC"CD title", "CD Artist", 100, 1997, 11, false);
ks

@Test

public void testInCollection() {
assertFalse(testCD.isInCollection());
test(D.setInCollection();
assertTrue(testCD.isInCollection());

}

Exercising the code and verifying its correctness

Oct 31, 2022 Sprenkle - CSCI209 8

Review: Expecting an Exception

® Sometimes an exception is the expected result

@Test
public void testIndexOutOfBoundsException() {
List emptylList = new ArraylList();

assertThrows(IndexQutOfBoundsException.class,
(O -> { Object o = emptyList.get(@); }
D3

Test case passes only if exception is thrown

Oct 31, 2022 Sprenkle - CSCI209 9

Expecting an Exception: Breaking It Down

assertThrows(Class<T> expectedType, Executable executable)

@Test
public void testIndexOutOfBoundsException() {
List emptylList = new ArraylList(Q);

assertThrows(IndexOutOfBoundsException.class,
(OO -> { Object o = emptylList.get(@); }

’ How to read assertThrows:
} Execute the highlighted code (in {})

and check if it throws that exception type

A lot more can be said about lambda expressions... but not in CSCI209

Oct 31, 2022 Sprenkle - CSCI209 10

10

https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html?is-external=true
https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/function/Executable.html

Expecting an Exception

® Can also check characteristics of the thrown

exception

@Test
public void testIndexOutOfBoundsException() {
List myList = new ArraylList(Q);
IndexOutOfBoundsException ioobExc =
assertThrows(IndexOutOfBoundsException.class, (O -> {
myList.get(@);

1
System.out.println(ioobExc.getMessage());
assertEquals("Index @ out of bounds for length 0",

i00bExc.getMessage());

ks

Test case passes only if exception is thrown
and message matches

Oct 31, 2022 11

11

Review: Some Approaches to Testing Methods

® Typical case
Test typical values of input/parameters
® Boundary conditions
Test at boundaries of input/parameters
Many faults live “in corners”
® Parameter validation

Verify that parameter and object bounds are documented
and checked

Example: pre-condition that parameter isn’t null

I = All black-box testing approaches

12

12

EVALUATING TEST SUITES

Oct 31, 2022 Sprenkle - CSCI209 13

13

Evaluating Test Suites

® Software testing research question:
Is my approach to generating a test suite better than
the state-of-the-art test suite generation?

® One approach to answer question:
Fault-based Evaluation
Given known faults (a.k.a. mutants)

How many faults/mutants does my test suite kill/reveals?

® Kill a fault by creating at least one test case that fails when
exercising that fault

14

Lab: Catching the Mutants

® Objective: Practice writing JUnit test cases

® |n Mutant.java, you have the specification for
how the method thirdShortest should work

® \Write test cases that test that the method works
as expected

® Goal: reveal all the bugs/mutants using test
cases!

OOOOO ,2022 Sprenkle - CSCI209

15

Lab: Catching the Mutants
® Why designed this way:

You get feedback on if you've tested “enough”

Practice testing — knowing how much more you need
to do

® Not typically known in the real world!

Oct 31, 2022 Sprenkle - CSCI209

16

Lab: Catching the Mutants
®Set Up

Jar file (contains mutant class files)

Classpath — tell compiler/JVM to use JUnit and
mutants.jar

Oct 31, 2022 Sprenkle - CSCI209

17

Catching the Mutants: Post-Mortem

® \What are the benefits of unit testing/using JUnit?
Consider if you were developing/maintaining the method
How would your testing/development process change?

® Why did the output come out in strange orders
sometimes?

® |s it okay that some mutants passed some of the test
cases?

® Recall the characteristics of good unit tests
How did you achieve them in your testing?

Oct 31, 2022 Sprenkle - CSCI209 18

18

Are These Effective Tests?

@Test

public void testThirdShortest() {
String[] words = { "a", "ab", "abc" };
String actual = mutant.thirdShortest(words);
assertEquals(3, actual.length());

ks
@Test
public void testExceptionThrown() {
String[] words = { "a" };
assertThrows(Exception.class, () -> {
mutant.thirdShortest(words);
1
ks
Oct 31, 2022 Sprenkle - CSCI209 19
19
. . @Test
Test Discussion public void testThirdShortest() {
String[] words = { "a", "ab", "abc" };
String actual =
.They are Correct tests mutant.thirdShortest(words);
assertfquals("abc", actual);
} Check the actual result

They will reveal bugs

®* However, they are weak tests

Cover necessary invariants, but they are not sufficient

to expose failures erest _
public void testExceptionThrown() {

String[] words = { "a" };

assertThrows(I1legalArgumentException.class,

O > { Expect the exact exception
mutant.thirdShortest(words);

s

Oct 31, 2022 Sprenkle - CSCI209 20

20

Testing More Than One Possible Answer

®thirdShortest only returns one answer (a

String) but there could be multiple different
correct answers

We can discuss if this is the best design but ...

® Example test

@Test

public void testMoreInArray2() {
Str‘ing[] Wor'ds = { Ilall’ llbll’ llbcll’ Ilabll’ llbyell’ "andll };
String result = mutant.thirdShortest(words);
assertTrue(result.equals("bye") |1 result.equals("and"));

21

Is This An Effective Test?

@Test
public void testAl1() {
String[][] tests = { { "a", "ab", "abc" },

{ "1, "12", "12345", "12345345", "2340i34iuwer" },

{ "cba", "abc", "bca", "a", "a", "a", "ab", "ab", "ab" } };
assertEqualsCmutant.thirdShortest(tests[@]), "abc");
assertbqualsCmutant.thirdShortest(tests[1]), "12345");
assertTrue(mutant.thirdShortest(tests[2]).equals("cba™) 1|1

mutant.thirdShortest(tests[2]).equals("abc") ||

mutant.thirdShortest(tests[2]).equals("bca™));
assertThrows(IllegalArgumentException.class, (O -> {

mutant.thirdShortest(null) 1});
assertThrows(IllegalArgumentException.class, (O -> {

mutant.thirdShortest(new String[J1{}); 3});
assertThrows(IllegalArgumentException.class, (O -> {

mutant.thirdShortest(new String[J]{ "hey" 1); });
assertThrows(IllegalArgumentException.class, (O -> {

mutant.thirdShortest(new String[]{ "hey", "there" }); }D;

String[] words = { "abcds", "b", "bc", "ab", "bye", "and" };
String[] original = { "abcds", "b", "bc", "ab", "bye", "and" },;
result = mutant.thirdShortest(words);
assertTrue(result.equals("bye") || result.equals("and"));
assertEquals(Arrays.aslist(words), Arrays.aslList(original));

22

IS Th IS An EffeCt|Ve Test? May be effective but hard to use

Test Tests are not independent

public void testAl1() { Will be hard to pinpoint bugs
String[][] tests = { { "a", "ab", "abc" },

{ "1, "12", "12345", "12345345", "2340i34iuwer" },

{ "cba", "abc", "bca", "a", "a", "a", "ab", "ab", "ab" } };
assertEqualsCmutant.thirdShortest(tests[@]), "abc");
assertEqual s(mutant.thirdShortest(tests[1]), "12345");
assertTrue(mutant.thirdShortest(tests[2]).equals("cba™) |1

mutant.thirdShortest(tests[2]).equals("abc") ||

mutant.thirdShortest(tests[2]).equals("bca™));
assertThrows(IllegalArgumentException.class, () -> {

mutant.thirdShortest(null) 1});
assertThrows(IllegalArgumentException.class, () -> {

mutant.thirdShortest(new String[1{3}); });
assertThrows(IllegalArgumentException.class, () -> {

mutant.thirdShortest(new String[]{ "hey" 3}); 1});
assertThrows(IllegalArgumentException.class, () -> {

mutant.thirdShortest(new String[]{ "hey", "there" }); });

String[] words = { "abcds", "b", "bc", "ab", "bye", "and" };
String[] original = { "abcds", "b", "bc", "ab", "bye", "and" };
result = mutant.thirdShortest(words);
assertTrue(result.equals("bye") || result.equals("and"));
assertfquals(Arrays.aslList(words), Arrays.aslist(original));

23

Guidance for Writing Tests

® Group tests in methods, classes
Class could be by behavior, by error conditions, ...

® Test methods should focus on one behavior

If test case fails, should be helpful in narrowing down
where the problem is

® See examples on course schedule

Oct 31, 2022 Sprenkle - CSCI209 24

24

Review: Test-Driven Development

® A development style, evolved from Extreme
Programming
® |dea: write tests first without code bias

How do you know you're “done”

¢ The Process: in traditional development?
Write tests that code/new functionality should pass
e Like a specification for the code (pre/post conditions)
® All tests will initially fail
Write the code and verify that it passes test cases
Know you’re done coding when you pass all tests

What assumption does this make? Sprenkle - CSC1209 25

25

Project: Test-Driven Development

® Given: a Car class that only has enough code to compile

® Your job: Create a good set of test cases that
thoroughly/effectively test Car class
Find faults in my faulty version of Car class
Start: look at code, think about how to test, set up JUnit tests
Written analysis of process
® First team project: teams of 3
Practice collaboration
Every student must commit code to the repository
® First step: create teams (and team names!) today
Due before 10 a.m. tomorrow

Oct 31, 2022 Sprenkle - CSCI209 26

26

Looking Ahead

® Testing Project due next Wednesday before class

THINK
DISCUSS as a team
Then write the tests

® Teams finalized tomorrow

® |Lab was an in-class exercise

Practice JUnit testing before project

Oct 31, 2022

Sprenkle - CSCI209 27

27

