
11/2/22

1

Objectives
•Testing
•Collaboration
•Coverage

Nov 2, 2022 Sprenkle - CSCI209 1

1

Review
1. What are the steps to a JUnit test case?

Ø How do we implement them?
2. What approaches did you take to writing good test cases to reveal the mutants?

Ø How is programming tests the same/different from programming generally?
3. What are the benefits of unit testing/using JUnit?

Ø Consider if you were developing/maintaining the thirdShortest method
Ø How would your testing/development process change?

4. Is it okay that some mutants passed some of the test cases?
5. Recall the characteristics of good unit tests

Ø How did you achieve them in your testing?
6. True or False.  Unit testing is all the testing that needs to be done for an application.
7. Why did the output from RevealingMutantsEvaluator come out in 

strange/unexpected orders sometimes?

Nov 2, 2022 Sprenkle - CSCI209 2

2



11/2/22

2

Catch the Mutants: Post-Mortem
•One test case can find multiple bugs
ØThere is not a one-to-one mapping

•There was an issue in Mutants 11 and 12 that 
they had the same bug as Mutant 9 plus another 
bug L

Nov 2, 2022 Sprenkle - CSCI209 3

3

Nov 2, 2022 Sprenkle - CSCI209 4

4



11/2/22

3

Think about Team (Group) Projects
•Why did some work well?
•Why were some disasters?

Nov 2, 2022 Sprenkle - CSCI209 5

5

Teams Work Best When They are Interdependent

•In code terms, we want loose coupling
ØDepend on each other but don’t depend on their details

•Consider 
ØAre you allowing your team to truly be interdependent? 
ØWho might be you be ignoring?  
ØWho might be allowing themselves to feel inadequate?
ØHow do you show appreciation for each other and 

yourself?  
Nov 2, 2022 Sprenkle - CSCI209 6

6



11/2/22

4

Collaboration: Team Project
• Version Control does not eliminate need for 

communication
ØProcess becomes much more difficult if developers do not 

communicate
• Keep the version to be graded in main branch
• Before picking up again on development, pull the 

repository 
ØGet others’ changes in main; merge into your branch

• Each student on team must make significant commits to 
the project’s repository

Nov 2, 2022 Sprenkle - CSCI209 7

7

Collaboration: Team Project
• Need to talk about the solution
• Discuss your plan, e.g., 

ØYour assumptions about the Car class
ØYour system for testing to make sure that you test everything
ØOrganization of test cases
ØNaming
ØDivision of labor

• Maintain planning documents too
Øin GitHub or elsewhere

Nov 2, 2022 Sprenkle - CSCI209 8

8



11/2/22

5

Collaboration: Workflow – Seeking Feedback
1. Create a branch for your work from main

Ø Commit periodically
Ø Write descriptive comments so your team members know what you did and 

why
2. Push your branch
3. Open a Pull Request on your branch in GitHub

Ø You can tag your teammates to let them know that you’ve completed your 
work

Ø Team: discuss and review potential changes – can still update
4. Merge pull request into main branch (when ready)
5. Pull the main branch to get the latest code

Ø May want to merge main into your branch

Nov 2, 2022 Sprenkle - CSCI209 9

9

Collaboration: Workflow
1. Create a branch for your work

ØCommit periodically
ØWrite descriptive comments so your team members know what 

you did and why
2. Switch to main
3. Pull main branch
4. Merge your branch into the main branch

Ø Handle merge conflicts
Ø Commit

5. Push main branch
Nov 2, 2022 Sprenkle - CSCI209 10

10



11/2/22

6

Guidance for Writing JUnit Tests
•A test method should focus on one behavior
ØIf test case fails, the test case should be helpful in 

narrowing down where the problem is

•Testing isn’t typically “creative” and doesn’t need 
to be generalizable
ØCode should be straightforward

•See examples linked from course schedule page
Nov 2, 2022 Sprenkle - CSCI209 11

11

Guidance for Organizing JUnit Tests
•Group tests in methods, classes
•Classes could be distinguished by behavior, by 

error conditions, by set up method…
•Name methods based on what they test
ØTemplate: functionality_state_expectedresult
ØExample: go_fulltank_moves

Nov 2, 2022 Sprenkle - CSCI209 12

12



11/2/22

7

Suggestions for How to Approach
•THINK first

ØUse paper/a document to structure your thoughts and 
systematically consider what you need to test

ØDecide on assumptions about specification
•Iterative approach

ØEach team member implement a few tests
• Put into repository

ØDiscuss as a team
• Reconsider/confirm your assumptions, how you want to break up 

the work

Nov 2, 2022 Sprenkle - CSCI209 13

13

Review: Software Testing Issues
•How should you test?  How often?

ØCode may change frequently
ØCode may depend on others’ code
ØA lot of code to validate

•How do you know that an output is correct?
ØComplex output
ØHuman judgment?  

•What caused a code failure?
Nov 2, 2022 Sprenkle - CSCI209 14

➥ Need a systematic, automated, 
repeatable approach

14



11/2/22

8

Software Testing Issues
• How do we know if our code is correct?

ØHow do we know that we’ve exposed all the faults?
ØHow confident are we in its correctness?

• How do we know if we’ve tested enough?
ØPasses all of our TDD test suite

• But did we come up with all the necessary test cases?
ØTime?  It’s been a couple hours/days/…
ØNumber of test cases executed?  A lot!
ØI asked my sister and she’s really smart and she says that it’s 

enough

Nov 2, 2022 Sprenkle - CSCI209 15

15

Software Testing Issues
•How do we know if our code is correct?
ØHow do we know that we’ve exposed all the faults?
ØHow confident are we in its correctness?

•How do we know if we’ve tested enough?
ØOur customers want this product soon but we need 

product to be correct
•Harder to fix after it has been released

Nov 2, 2022 Sprenkle - CSCI209 16

16



11/2/22

9

Testing Continuum

Nov 2, 2022 Sprenkle - CSCI209 17

No testing Exhaustive Testing

• Give to customer immediately
• Likely buggy!
• Very little confidence in 

program’s quality

• Test every possible input
• Costly, impractical
• Need to release application to 

customers sometime!

17

Testing Continuum

•Need to execute all code
•Cover (i.e., execute) all statements in the program

Nov 2, 2022 Sprenkle - CSCI209 18

No testing Exhaustive
Testing

Statement-
Coverage

18



11/2/22

10

Analogy: Map coverage

Nov 2, 2022 Sprenkle - CSCI209 19

Goal: Expose all the “scarecrows”

19

Statement Coverage
•Cover all statements in the program

Nov 2, 2022 Sprenkle - CSCI209 20

public String exampleMethod(int num) {
String string = null;
if (num < 10) {

string = "huzzah!";
}
// remove leading & trailing whitespace
return string.trim();

}

Test Suite:  num=5 

!
!
!

!

Is this method bug-free?

1
2
3

4

20



11/2/22

11

Program Flow

Nov 2, 2022 Sprenkle - CSCI209 21

exampleMethod(int num)

String string = null;

if( num < 10 )

string = 
"huzzah!";

string.trim();

true Implicit
false Branch

public String exampleMethod(int num) {
String string = null;
if (num < 10) {

string = "huzzah!";
}
return string.trim();

}

21

What Went Wrong?
•Test suite had 100% 

statement coverage but 
missed a branch/edge

•Try covering all edges in 
program’s flow
ØAlso covers all nodes
ØCalled Branch Coverage

Nov 2, 2022 Sprenkle - CSCI209 22

exampleMethod(int num)

String string = null;

if( num < 10 )

string = 
"huzzah!";

string.trim();

true Implicit
false Branch

22



11/2/22

12

Branch Coverage
•Cover all branches in the 

program

Nov 2, 2022 Sprenkle - CSCI209 23

exampleMethod(int num)

String string = null;

if( num < 10 )

string.trim();

Test Suite:
num=5, 
num=10

String string = null;

if( num < 10 )

string.trim();

exampleMethod(int num)

string = 
"huzzah!";

true Implicit
false Branch

string = 
"huzzah!";

23

Branch Coverage
•Cover all branches in the 

program

Nov 2, 2022 Sprenkle - CSCI209 24

exampleMethod(int num)

String string = null;

if( num < 10 )

string.trim();

Test Suite:
num=5, 
num=10

String string = null;

if( num < 10 )

string.trim();

exampleMethod(int num)

string = 
”huzzah!” ;

true Implicit
false Branch

24



11/2/22

13

Branch Coverage
•Cover all branches in the 

program

Nov 2, 2022 Sprenkle - CSCI209 25

exampleMethod(int num)

String string = null;

if( num < 10 )

string.trim();

Test Suite:
num=5, 
num=10

String string = null;

if( num < 10 )

string.trim();

exampleMethod(int num)

string = 
”huzzah!” ;

true Implicit
false Branch

25

Example 2

Nov 2, 2022 Sprenkle - CSCI209 26

public static String exampleMethod(int a) {
String str = "d";
if ( a < 7 ) {

a *= 2;
str += "riv";

} else {
str = "co" + str;

}

if( a > 10 ) {
str += "ing";

} else {
str += "es";

}
return str.substring(6);

}

26



11/2/22

14

Example 2

Nov 2, 2022 Sprenkle - CSCI209 27

exampleMethod(int a)

if( a < 7 )

return str.substring(6);

a *= 2;
str += "riv";

str = "co" 
+ str;

if( a > 10 )

str += "ing"; str += "es";

true

true

false

false

String str = “d”;public String exampleMethod(int a) {
String str = "d";
if ( a < 7 ) {

a *= 2;
str += "riv";

} else {
str = "co" + str;

}

if( a > 10 ) {
str += "ing";

} else {
str += "es";

}
return str.substring(6);

}

1

2

3 4

5

6 7

8

27

Branch Coverage

Nov 2, 2022 Sprenkle - CSCI209 28

exampleMethod(int a)

if( a < 7 )

return str.substring(6);

a *= 2;
str += “riv”;

str = "co" 
+ str;

if( a > 10 )

str += "ing"; str += “es”;

true

true

false

false

String str = “d”;

Test Suite: 
a=3,
a=30

exampleMethod(int a)

if( a < 7 )

return str.substring(6);

a *= 2;
str += "riv";

if( a > 10 )

str += "es";

String str = "d";
1

2

3 4

5

6 7

8

str="driv"
a=6

str="drives"

""

28



11/2/22

15

Branch Coverage

Nov 2, 2022 Sprenkle - CSCI209 29

exampleMethod(int a)

if( a < 7 )

return str.substring(6);

a *= 2;
str += “riv”;

str = “co” 
+ str;

if( a > 10 )

str += “ing”; str += “es”;

true

true

false

false

String str = “d”;

exampleMethod(int a)

if( a < 7 )

return str.substring(6);

if( a > 10 )

String str = “d”;
1

2

3 4

5

6 7

8

str = “co” 
+ str;

str += “ing”;

str="cod"
a=30

str="coding"

""

Test Suite: 
a=3,
a=30

29

Branch Coverage

Nov 2, 2022 Sprenkle - CSCI209 30

exampleMethod(int a)

if( a < 7 )

return str.substring(6);

a *= 2;
str += "riv";

str = "co" 
+ str;

if( a > 10 )

str += "ing"; str += "es";

true

true

false

false

String str = "d";
1

2

3 4

5

6 7

8

Is this method bug free?

Test Suite: 
a=3,
a=30

30



11/2/22

16

What Went Wrong?
• Test suite had 100% branch 

(and statement) coverage but 
missed a path

• Try to cover all paths in 
program’s flow
Ø Also gets all branches, nodes
Ø Called Path Coverage

Nov 2, 2022 Sprenkle - CSCI209 31

exampleMethod(int a)

if( a < 7 )

return str.substring(6);

a *= 2;
str += "riv";

str = "co" 
+ str;

if( a > 10 )

str += "ing"; str += "es";

true

true

false

false

String str = "d";
1

2

3 4

5

6 7

8

31

Path Coverage
•Cover all paths in 

program’s flow
•How many paths through 

this method?
•What test cases would 

give us path coverage?

Nov 2, 2022 Sprenkle - CSCI209 32

exampleMethod(int a)

if( a < 7 )

return str.substring(6);

a *= 2;
str += "riv";

str = "co" 
+ str;

if( a > 10 )

str += "ing"; str += "es";

true

true

false

false

String str = "d";
1

2

3 4

5

6 7

8

32



11/2/22

17

Path Coverage
• Cover all paths in program’s 

flow
• How many paths through this 

method? 4
Ø1-2-3-5-6-8
Ø1-2-3-5-7-8
Ø1-2-4-5-6-8
Ø1-2-4-5-7-8

• What test cases would give 
us path coverage?
ØOne possibility: a = 3, 30, 6, 10

Nov 2, 2022 Sprenkle - CSCI209 3333

exampleMethod(int a)

if( a < 7 )

return str.substring(6);

a *= 2;
str += "riv";

str = "co" 
+ str;

if( a > 10 )

str += "ing"; str += "es";

true

true

false

false

String str = "d";
1

2

3 4

5

6 7

8

33

Example 3

Nov 2, 2022 Sprenkle - CSCI209 34

int gcd(int x, int y)

while( x > 0 && y > 0 ) 

if( x > y )

x -= y; y -= x;

/**
* Euclid's algorithm to calculate
* greatest common divisor
*/

public int gcd( int x, int y ) {
while ( x > 0 && y > 0 ) {

if( x > y ) {
x -=y ;

} else {
y -=x;

}
}
return x+y;

}

return x+y;

true

false

falsetrue

1

2

3 4

5

6

34



11/2/22

18

Looking Ahead
•Friday
ØCoverage, Design

•Wednesday: Testing 
project

Nov 2, 2022 Sprenkle - CSCI209 35

35


