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Objectives
•Testing
•Collaboration
•Coverage
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Review
1. What are the steps to a JUnit test case?

Ø How do we implement them?
2. What approaches did you take to writing good test cases to reveal the mutants?

Ø How is programming tests the same/different from programming generally?
3. What are the benefits of unit testing/using JUnit?

Ø Consider if you were developing/maintaining the thirdShortest method
Ø How would your testing/development process change?

4. Is it okay that some mutants passed some of the test cases?
5. Recall the characteristics of good unit tests

Ø How did you achieve them in your testing?
6. True or False.  Unit testing is all the testing that needs to be done for an application.
7. Why did the output from RevealingMutantsEvaluator come out in 

strange/unexpected orders sometimes?
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Catch the Mutants: Post-Mortem
•One test case can find multiple bugs
ØThere is not a one-to-one mapping

•There was an issue in Mutants 11 and 12 that 
they had the same bug as Mutant 9 plus another 
bug L
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Think about Team (Group) Projects
•Why did some work well?
•Why were some disasters?
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Teams Work Best When They are Interdependent

•In code terms, we want loose coupling
ØDepend on each other but don’t depend on their details

•Consider 
ØAre you allowing your team to truly be interdependent? 
ØWho might be you be ignoring?  
ØWho might be allowing themselves to feel inadequate?
ØHow do you show appreciation for each other and 

yourself?  
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Collaboration: Team Project
• Version Control does not eliminate need for 

communication
ØProcess becomes much more difficult if developers do not 

communicate
• Keep the version to be graded in main branch
• Before picking up again on development, pull the 

repository 
ØGet others’ changes in main; merge into your branch

• Each student on team must make significant commits to 
the project’s repository
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Collaboration: Team Project
• Need to talk about the solution
• Discuss your plan, e.g., 

ØYour assumptions about the Car class
ØYour system for testing to make sure that you test everything
ØOrganization of test cases
ØNaming
ØDivision of labor

• Maintain planning documents too
Øin GitHub or elsewhere
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Collaboration: Workflow – Seeking Feedback
1. Create a branch for your work from main

Ø Commit periodically
Ø Write descriptive comments so your team members know what you did and 

why
2. Push your branch
3. Open a Pull Request on your branch in GitHub

Ø You can tag your teammates to let them know that you’ve completed your 
work

Ø Team: discuss and review potential changes – can still update
4. Merge pull request into main branch (when ready)
5. Pull the main branch to get the latest code

Ø May want to merge main into your branch
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Collaboration: Workflow
1. Create a branch for your work

ØCommit periodically
ØWrite descriptive comments so your team members know what 

you did and why
2. Switch to main
3. Pull main branch
4. Merge your branch into the main branch

Ø Handle merge conflicts
Ø Commit

5. Push main branch
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Guidance for Writing JUnit Tests
•A test method should focus on one behavior
ØIf test case fails, the test case should be helpful in 

narrowing down where the problem is

•Testing isn’t typically “creative” and doesn’t need 
to be generalizable
ØCode should be straightforward

•See examples linked from course schedule page
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Guidance for Organizing JUnit Tests
•Group tests in methods, classes
•Classes could be distinguished by behavior, by 

error conditions, by set up method…
•Name methods based on what they test
ØTemplate: functionality_state_expectedresult
ØExample: go_fulltank_moves
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Suggestions for How to Approach
•THINK first

ØUse paper/a document to structure your thoughts and 
systematically consider what you need to test

ØDecide on assumptions about specification
•Iterative approach

ØEach team member implement a few tests
• Put into repository

ØDiscuss as a team
• Reconsider/confirm your assumptions, how you want to break up 

the work
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Review: Software Testing Issues
•How should you test?  How often?

ØCode may change frequently
ØCode may depend on others’ code
ØA lot of code to validate

•How do you know that an output is correct?
ØComplex output
ØHuman judgment?  

•What caused a code failure?
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➥ Need a systematic, automated, 
repeatable approach
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Software Testing Issues
• How do we know if our code is correct?

ØHow do we know that we’ve exposed all the faults?
ØHow confident are we in its correctness?

• How do we know if we’ve tested enough?
ØPasses all of our TDD test suite

• But did we come up with all the necessary test cases?
ØTime?  It’s been a couple hours/days/…
ØNumber of test cases executed?  A lot!
ØI asked my sister and she’s really smart and she says that it’s 

enough
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Software Testing Issues
•How do we know if our code is correct?
ØHow do we know that we’ve exposed all the faults?
ØHow confident are we in its correctness?

•How do we know if we’ve tested enough?
ØOur customers want this product soon but we need 

product to be correct
•Harder to fix after it has been released
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Testing Continuum
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No testing Exhaustive Testing

• Give to customer immediately
• Likely buggy!
• Very little confidence in 

program’s quality

• Test every possible input
• Costly, impractical
• Need to release application to 

customers sometime!
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Testing Continuum

•Need to execute all code
•Cover (i.e., execute) all statements in the program
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No testing Exhaustive
Testing

Statement-
Coverage
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Analogy: Map coverage
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Goal: Expose all the “scarecrows”
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Statement Coverage
•Cover all statements in the program
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public String exampleMethod(int num) {
String string = null;
if (num < 10) {

string = "huzzah!";
}
// remove leading & trailing whitespace
return string.trim();

}

Test Suite:  num=5 

!
!
!

!

Is this method bug-free?

1
2
3

4
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Program Flow
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exampleMethod(int num)

String string = null;

if( num < 10 )

string = 
"huzzah!";

string.trim();

true Implicit
false Branch

public String exampleMethod(int num) {
String string = null;
if (num < 10) {

string = "huzzah!";
}
return string.trim();

}
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What Went Wrong?
•Test suite had 100% 

statement coverage but 
missed a branch/edge

•Try covering all edges in 
program’s flow
ØAlso covers all nodes
ØCalled Branch Coverage
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exampleMethod(int num)

String string = null;

if( num < 10 )

string = 
"huzzah!";

string.trim();

true Implicit
false Branch
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Branch Coverage
•Cover all branches in the 

program
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exampleMethod(int num)

String string = null;

if( num < 10 )

string.trim();

Test Suite:
num=5, 
num=10

String string = null;

if( num < 10 )

string.trim();

exampleMethod(int num)

string = 
"huzzah!";

true Implicit
false Branch

string = 
"huzzah!";
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Branch Coverage
•Cover all branches in the 

program
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exampleMethod(int num)

String string = null;

if( num < 10 )

string.trim();

Test Suite:
num=5, 
num=10

String string = null;

if( num < 10 )

string.trim();

exampleMethod(int num)

string = 
”huzzah!” ;

true Implicit
false Branch
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Branch Coverage
•Cover all branches in the 

program
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exampleMethod(int num)

String string = null;

if( num < 10 )

string.trim();

Test Suite:
num=5, 
num=10

String string = null;

if( num < 10 )

string.trim();

exampleMethod(int num)

string = 
”huzzah!” ;

true Implicit
false Branch
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Example 2
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public static String exampleMethod(int a) {
String str = "d";
if ( a < 7 ) {

a *= 2;
str += "riv";

} else {
str = "co" + str;

}

if( a > 10 ) {
str += "ing";

} else {
str += "es";

}
return str.substring(6);

}
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Example 2
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exampleMethod(int a)

if( a < 7 )

return str.substring(6);

a *= 2;
str += "riv";

str = "co" 
+ str;

if( a > 10 )

str += "ing"; str += "es";

true

true

false

false

String str = “d”;public String exampleMethod(int a) {
String str = "d";
if ( a < 7 ) {

a *= 2;
str += "riv";

} else {
str = "co" + str;

}

if( a > 10 ) {
str += "ing";

} else {
str += "es";

}
return str.substring(6);

}

1

2

3 4

5

6 7

8
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Branch Coverage
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exampleMethod(int a)

if( a < 7 )

return str.substring(6);

a *= 2;
str += “riv”;

str = "co" 
+ str;

if( a > 10 )

str += "ing"; str += “es”;

true

true

false

false

String str = “d”;

Test Suite: 
a=3,
a=30

exampleMethod(int a)

if( a < 7 )

return str.substring(6);

a *= 2;
str += "riv";

if( a > 10 )

str += "es";

String str = "d";
1

2

3 4

5

6 7

8

str="driv"
a=6

str="drives"

""
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Branch Coverage
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exampleMethod(int a)

if( a < 7 )

return str.substring(6);

a *= 2;
str += “riv”;

str = “co” 
+ str;

if( a > 10 )

str += “ing”; str += “es”;

true

true

false

false

String str = “d”;

exampleMethod(int a)

if( a < 7 )

return str.substring(6);

if( a > 10 )

String str = “d”;
1

2

3 4

5

6 7

8

str = “co” 
+ str;

str += “ing”;

str="cod"
a=30

str="coding"

""

Test Suite: 
a=3,
a=30
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Branch Coverage
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exampleMethod(int a)

if( a < 7 )

return str.substring(6);

a *= 2;
str += "riv";

str = "co" 
+ str;

if( a > 10 )

str += "ing"; str += "es";

true

true

false

false

String str = "d";
1

2

3 4

5

6 7

8

Is this method bug free?

Test Suite: 
a=3,
a=30

30
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What Went Wrong?
• Test suite had 100% branch 

(and statement) coverage but 
missed a path

• Try to cover all paths in 
program’s flow
Ø Also gets all branches, nodes
Ø Called Path Coverage
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exampleMethod(int a)

if( a < 7 )

return str.substring(6);

a *= 2;
str += "riv";

str = "co" 
+ str;

if( a > 10 )

str += "ing"; str += "es";

true

true

false

false

String str = "d";
1

2

3 4

5

6 7

8
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Path Coverage
•Cover all paths in 

program’s flow
•How many paths through 

this method?
•What test cases would 

give us path coverage?
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exampleMethod(int a)

if( a < 7 )

return str.substring(6);

a *= 2;
str += "riv";

str = "co" 
+ str;

if( a > 10 )

str += "ing"; str += "es";

true

true

false

false

String str = "d";
1

2

3 4

5

6 7

8
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Path Coverage
• Cover all paths in program’s 

flow
• How many paths through this 

method? 4
Ø1-2-3-5-6-8
Ø1-2-3-5-7-8
Ø1-2-4-5-6-8
Ø1-2-4-5-7-8

• What test cases would give 
us path coverage?
ØOne possibility: a = 3, 30, 6, 10
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exampleMethod(int a)

if( a < 7 )

return str.substring(6);

a *= 2;
str += "riv";

str = "co" 
+ str;

if( a > 10 )

str += "ing"; str += "es";

true

true

false

false

String str = "d";
1

2

3 4

5

6 7

8
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Example 3
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int gcd(int x, int y)

while( x > 0 && y > 0 ) 

if( x > y )

x -= y; y -= x;

/**
* Euclid's algorithm to calculate
* greatest common divisor
*/

public int gcd( int x, int y ) {
while ( x > 0 && y > 0 ) {

if( x > y ) {
x -=y ;

} else {
y -=x;

}
}
return x+y;

}

return x+y;

true

false

falsetrue

1

2

3 4

5

6
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Looking Ahead
•Friday
ØCoverage, Design

•Wednesday: Testing 
project
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