
11/4/22

1

Objectives
•Coverage, Testing wrap up
•Design in the Small

Nov 4, 2022 Sprenkle - CSCI209 1

1

Review
1.What is our git workflow when we’re

collaborating with teammates?
Ø Both variations (why 2 variations?)

2.How should teams work together for success?
3.What is code coverage?
4.What is code coverage criteria?
Ø Provide examples of code coverage criteria

Nov 4, 2022 Sprenkle - CSCI209 2

2

11/4/22

2

Review:
Collaboration: Workflow – Seeking Feedback
1. Create a branch for your work from main

Ø Commit periodically
Ø Write descriptive comments so your team members know what you did and

why
2. Push your branch
3. Open a Pull Request on your branch in GitHub

Ø You can tag your teammates to let them know that you’ve completed your
work

Ø Team: discuss and review potential changes – can still update
4. Merge pull request into main branch (when ready)
5. Pull the main branch to get the latest code

Ø May want to merge main into your branch

Nov 4, 2022 Sprenkle - CSCI209 3

3

Review: Collaboration: Workflow
1. Create a branch for your work

ØCommit periodically
ØWrite descriptive comments so your team members know what

you did and why
2. Switch to main
3. Pull main branch
4. Merge your branch into the main branch

Ø Handle merge conflicts
Ø Commit

5. Push main branch
Nov 4, 2022 Sprenkle - CSCI209 4

4

11/4/22

3

•Your actions should match what your team says
are your squad goals

Nov 4, 2022 Sprenkle - CSCI209 5

Culture Eats Strategy for Breakfast

5

Review: Code Coverage
•Code coverage: the amount of code that your

tests execute
•Code coverage criteria: metric used
ØStatement: number/% of statements executed
ØBranch: number/% of statements + branches

(conditions, loops) executed
ØPath: number/% of paths executed

Nov 4, 2022 Sprenkle - CSCI209 6

6

11/4/22

4

Path Coverage
•How many paths through

this method?
ØToo many to count, test

them all!

Nov 4, 2022 Sprenkle - CSCI209 7

int gcd(int x, int y)

while(x > 0 && y > 0)

if(x > y)

x -= y; y -= x;

return x+y;

true

false

false
1-6
1-2-3-5-1-6
1-2-4-5-1-6
1-2-3-5-1-2-3-5-1-6
1-2-4-5-1-2-4-5-1-6
1-[2-(3|4)-5-1]*-6

1

2

3 4

5

6

true

7

Testing Continuum

Nov 4, 2022 Sprenkle - CSCI209 8

No testing Exhaustive
Testing

Branch-
Coverage

Statement-
Coverage

Path-
Coverage

8

11/4/22

5

Comparison of Coverage Criteria

Nov 4, 2022 Sprenkle - CSCI209 9

Coverage
Criterion

Advantages Disadvantages

Statement

Branch

Path

No
testing

Exhaustive
TestingBranchStatement Path

9

Comparison of Coverage Criteria

Nov 4, 2022 Sprenkle - CSCI209 10

Coverage
Criterion

Advantages Disadvantages

Statement Practical Weak, may miss many
faults

Branch Practical, Stronger
than Statement

Weaker than Path

Path Strongest Infeasible, too many
paths to be practical

10

11/4/22

6

How Can We Use Coverage Criteria?

Nov 4, 2022 Sprenkle - CSCI209 11

11

Uses of Coverage Criteria
•“Stopping” rule à sufficient testing
ØAvoid unnecessary, redundant tests

•Measure test quality
ØDependability estimate
ØConfidence in estimate

•Specify test cases
ØDescribe additional test cases needed

Nov 4, 2022 Sprenkle - CSCI209 12

12

11/4/22

7

Coverage Criteria Discussion
•Is it always possible for a test suite to cover all the

statements in a given program?
ØNo. Could be infeasible statements

• Unreachable code
• Legacy code
• Configuration that is not on site

•Do we need the test suite to cover 100% of
statements/branches to believe it is adequate?
Ø100% coverage does not mean correct program
ØBut < 100% coverage does mean testing inadequacy

Nov 4, 2022 Sprenkle - CSCI209 13

13

True/False Quiz
•A program that passes all test cases in a test suite

with 100% path coverage is bug-free.
ØFalse.
ØExamples:
•The test suite may cover a faulty path with data values that

don’t expose the fault.
ØTowards Exhaustive Testing

•Errors of omission
ØMissing a whole if

Nov 4, 2022 Sprenkle - CSCI209 14

14

11/4/22

8

Example

Nov 4, 2022 Sprenkle - CSCI209 15

exampleMethod(int a)

int b=60;

if(a < 7)

return b;

a += 2; a -= 10;

if(a > 10)

b *= 2; b /= a;

Test Suite:
3-7: a=3
4-6: a=30
3-6: a=6
4-7: a=9

But, error shows up with
3-7: a=0
4-7: a=10

1

true

true

false

false

2

3 4

5

6 7

8 Could divide

by 0

15

Omission Example

Nov 4, 2022 Sprenkle - CSCI209 16

exampleMethod(int a)

int b=60;

if(a < 7)

return b;

a += 2; a -= 10;

if(a > 10)

b *= 2; b /= a;

1

true

true

false

false

2

3 4

5

6 7

8

Consider if the first if block
wasn’t in the code.
You could cover all the paths, but
you’re missing a crucial condition.

16

11/4/22

9

True/False Quiz
•When you add test cases to a test suite that

covers all statements so that it covers all
branches, the new test suite is more likely to be
better at exposing faults.
ØTrue.
ØYou’re adding test cases and covering new paths,

which may have faults.

Nov 4, 2022 Sprenkle - CSCI209 17

17

Which Test Suite Is Better?

•Branch-adequate suite is not necessarily better
than Statement-adequate suite
ØStatement-adequate suite could cover buggy paths

and include input value tests that Branch-adequate
suite doesn’t

Nov 4, 2022 Sprenkle - CSCI209 18

Statement-
adequate
Test Suite

Branch-
adequate
Test Suite

18

11/4/22

10

Example
•TS1 (Statement-Adequate):

Øa=0, 6
•TS2 (Branch-Adequate):

Øa=3, 30
•Statement-adequate will find

fault but branch-adequate
won’t
ØCovers the path that exposes

the fault

Nov 4, 2022 Sprenkle - CSCI209 19

exampleMethod(int a)

int b=60;

if(a < 7)

return b;

a *= 2;

if(a > 10)

b *= 2; b /= a;

19

Software Testing: When is Enough Enough?
• Need to decide when tested enough

ØBalance goals of releasing application, high quality standards
• Can use program coverage as “stopping” rule

ØAlso measure of confidence in test suite
ØStatement, Branch, Path and their tradeoffs
ØUse coverage tools to measure statement, branch coverage

• Still, need to use some other “smarts” besides program
coverage for creating test cases

Nov 4, 2022 Sprenkle - CSCI209 20

20

11/4/22

11

No Silver Bullet
•Recall the Fred Brooks’ quote:

Ø“There is no single development, in either technology or in
management technique, that by itself promises even one
order-of-magnitude improvement in productivity, in
reliability, in simplicity.”

ØKnown as “no silver bullet”
•Test coverage is one tool that will help us improve

the quality of our code, but it will not solve
everything

Nov 4, 2022 Sprenkle - CSCI209 21

21

OBJECT-ORIENTED DESIGN PRINCIPLES

Nov 4, 2022 Sprenkle - CSCI209 22

22

11/4/22

12

Designing Systems

• Requirements change
• Misunderstandings

in requirements
• New functionality

• Code must be soft
Ø Flexible
Ø Easy to change

• New or revised circumstances
• New contexts
• Fix bugs

Nov 4, 2022 Sprenkle - CSCI209 23

All systems change during their life cycle

23

Designing for Change Example
• July 2010, Oracle released Java 6 update 21

ØGenerated java.dll replaced
• COMPANY_NAME=Sun Microsystems, Inc. with
• COMPANY_NAME=Oracle Corporation

• Change caused OutOfMemoryError during Eclipse launch
ØEclipse versions 3.3-3.6 (widespread!)
ØWhy? Eclipse used the company name in the DLL in startup

(runtime parameters) on Windows
• Temporary Fix: Oracle changed name back
• Required changes to all Eclipse versions

Nov 4, 2022 Sprenkle - CSCI209 24Source: http://www.infoq.com/news/2010/07/eclipse-java-6u21

24

11/4/22

13

Designing Systems

•Questions to consider:
ØHow can we create designs that are stable in the face of

change?
ØHow do we know if our designs aren’t maintainable?
ØWhat can we do if our code isn’t maintainable?

•Answers will help us
ØDesign our own code
ØUnderstand others’ code

Nov 4, 2022 Sprenkle - CSCI209 25

All systems change during their life cycle

25

Designing Systems

•Questions to consider:
ØHow can we create designs that are stable in the face of

change?
ØHow do we know if our designs aren’t maintainable?
ØWhat can we do if our code isn’t maintainable?

•Answers will help us
ØDesign our own code
ØUnderstand others’ code

Nov 4, 2022 Sprenkle - CSCI209 26

All systems change during their life cycle

26

11/4/22

14

Best Practices Overview
• (DRY): Don’t repeat yourself
• Shy Code, Avoid Coupling
• Tell, Don’t Ask

• Avoid code smells

• SOLID
Ø Single Responsibility Principle
Ø Open-closed principle
Ø Liskov Substitution Principle
Ø Interface Segregation Principle
Ø Dependency Inversion Principle

Nov 4, 2022 Sprenkle - CSCI209 27

A lot of related fundamental principles.
We have been using them/applying them,
just haven’t named them.

27

Don’t Repeat Yourself (DRY):
Knowledge Representation

•Intuition: when need to change representation,
make in only one place

•Requires planning
ØWhat data needed, how represented (e.g., type)
ØConsider documentation as well

Nov 4, 2022 Sprenkle - CSCI209 28

Every piece of knowledge must have a
single, unambiguous, and authoritative representation within a system

28

11/4/22

15

Don’t Repeat Yourself (DRY):
Knowledge Representation

•Example:
ØCar class defined constants for gears
ØCarTest should refer to those constants
•Not redefine those gears, nor just hardcode numbers
•The values are likely to change, so refer to the variables.

Nov 4, 2022 Sprenkle - CSCI209 29

Every piece of knowledge must have a
single, unambiguous, and authoritative representation within a system

29

Don’t Repeat Yourself (DRY):
Knowledge Representation

• Example:
Ø Birthday class had a month

• Could be represented as a number and a String
Ø Best: represent as a number (only), i.e., only one instance variable to

represent the month
• Get month String from the number (e.g., MONTHS_OF_YEAR[month-
1])

ØWhy?

Nov 4, 2022 Sprenkle - CSCI209 30

Every piece of knowledge must have a
single, unambiguous, and authoritative representation within a system

30

11/4/22

16

Don’t Repeat Yourself (DRY):
Knowledge Representation

• Example:
Ø Birthday class had a month

• Could be represented as a number and as a String
Ø Best: represent as a number (only), i.e., only one instance variable to represent

the month
• Get month String from the number (e.g., MONTHS_OF_YEAR[month-1])

ØWhy? If need to update the month, just one variable needs to be
updated, not two, which can get out of sync

Nov 4, 2022 Sprenkle - CSCI209 31

Every piece of knowledge must have a
single, unambiguous, and authoritative representation within a system

31

Shy Code
•Goal: Won’t reveal too much of itself
•Otherwise: get coupling

ØCoupling: dependence on other code
ØStatic, dynamic, domain, temporal

•Coupling isn’t always bad…
ØCan’t be completely avoided…
ØWe want shy code – not completely isolated code

Nov 4, 2022 Sprenkle - CSCI209 32

What techniques have we discussed for how to keep our code shy?

32

11/4/22

17

Achieving Shy Code
•Private instance variables
ØEspecially mutable fields

•Make classes public only when need to be public
Øi.e., accessible by other classesà part of API

•Getter methods shouldn’t return private,
mutable state/objects
ØUse clone() before returning

Nov 4, 2022 Sprenkle - CSCI209 33

How can you make
any field immutable?

33

Coupling Overview
• Interdependence of classes

ØDependence makes class susceptible to breaking if other class
changes

• Class A is coupled with class B if class A
ØHas an object of type B

• Instance variable, Parameter, return type
ØCalls on methods of object B
ØIs a child class of or implements B

• Goal: Loose coupling
ØNon-goal: no coupling

Nov 4, 2022 Sprenkle - CSCI209 34

34

11/4/22

18

Static Coupling
•Code requires other code to compile
•Clearly, we need some static coupling!
ØExample: to display a line of text, we need the code

for System.out

•Problem if you include more than you need

Nov 4, 2022 Sprenkle - CSCI209 35

35

Static Coupling
•Code requires other code to compile
•Problem if you include more than you need
ØExample: poor use of inheritance
•Brings excess baggage
• Inheritance is reserved for “is-a” relationships

ØBase class should not include optional behavior
ØNot “uses-a” or “has-a”

•Solution: use composition or delegation instead
Nov 4, 2022 Sprenkle - CSCI209 36

36

11/4/22

19

Static Coupling
•Code requires other code to compile
•Problem if you include more than you need
•Solution: use composition or delegation instead

ØExample: I created a class where I have keys associated
with values. I shouldn’t extend HashMap, but use a
HashMap

ØExample: GamePiece class did not and should not include
chase functionality
• Only certain child classes need that functionality

Nov 4, 2022 Sprenkle - CSCI209 37

37

Tell, Don’t Ask
• When designing methods, think of them as sending a message

ØSend a message
ØGet a response

• Method call: 1) sends a request to do something; 2) response is
what is returned
ØDon’t ask about details
ØBlack-box, encapsulation, information hiding

• Example: hasSameBirthday(Birthday[] birthdays)
Ø Input: the array of birthdays to the method
ØOutput: true/false if two people had the same birthday

• Don’t need to know how it was determined; no printing of output

Nov 4, 2022 Sprenkle - CSCI209 40

40

11/4/22

20

Looking Ahead
•Today: Science Advisory Board!
•Tuesday, 11:45 a.m. – lunch and talk!
ØAndy Ramlatchan
ØCheck your email from Carolyn

•Wednesday: Testing project
•Friday-Sunday: Exam 2

Nov 4, 2022 Sprenkle - CSCI209 41

41

