
11/7/22

1

Objectives
•Design in the Small
•Code Smells
•Refactoring

Nov 7, 2022 Sprenkle - CSCI209 1

1

Review
1. What is code coverage?
2. What is code coverage criteria?

Ø Provide examples of code coverage criteria
3. How can you use/apply code coverage?

Ø In what type of testing can code coverage be used?
4. What are the benefits and limitations of code coverage?
5. What is guaranteed in software development?

Ø This informs how we design our code
6. What are some of the best practices in object-oriented design?

Ø Provide an example of the practice (in our assignments, in our discussions,
in Java, …)

Nov 7, 2022 Sprenkle - CSCI209 2

2

11/7/22

2

Review: Code Coverage
•Code coverage: the amount of code that your

tests execute
•Code coverage criteria: metric used
ØStatement: number/% of statements executed
ØBranch: number/% of statements + branches

(conditions, loops) executed
ØPath: number/% of paths executed

Nov 7, 2022 Sprenkle - CSCI209 3

3

Review: Uses of Coverage Criteria
•“Stopping” rule à sufficient testing
ØAvoid unnecessary, redundant tests

•Measure test quality
ØDependability estimate
ØConfidence in estimate

•Specify test cases
ØDescribe additional test cases needed

Nov 7, 2022 Sprenkle - CSCI209 4

4

11/7/22

3

Review: Coverage Limitations
•A test suite of test cases that all pass that has

100% [statement/branch/path] coverage of does
not mean bug-free code
ØErrors of omission
•Can’t cover what isn’t there

ØDifferent data values on same execution path may
expose errors

Nov 7, 2022 Sprenkle - CSCI209 5

Coverage + Other smarts to Create Good Tests à High-quality code

5

Review: Designing Systems

•Questions to consider:
ØHow can we create designs that are stable in the face of

change?
ØHow do we know if our designs aren’t maintainable?
ØWhat can we do if our code isn’t maintainable?

•Answers will help us
ØDesign our own code
ØUnderstand others’ code

Nov 7, 2022 Sprenkle - CSCI209 6

All systems change during their life cycle

6

11/7/22

4

Review: Best Practices Overview
• (DRY): Don’t repeat yourself
• Shy Code, Avoid Coupling
• Tell, Don’t Ask

• Avoid code smells

• SOLID
Ø Single Responsibility Principle
Ø Open-closed principle
Ø Liskov Substitution Principle
Ø Interface Segregation Principle
Ø Dependency Inversion Principle

Nov 7, 2022 Sprenkle - CSCI209 7

A lot of related fundamental principles

7

Tell, Don’t Ask
• When designing methods, think of them as sending a message

ØSend a message
ØGet a response

• Method call: 1) sends a request to do something; 2) response is
what is returned
ØDon’t ask about details
ØBlack-box, encapsulation, information hiding

• Example: hasSameBirthday(Birthday[] birthdays)
Ø Input: the array of birthdays to the method
ØOutput: true/false if two people had the same birthday

• Don’t need to know how it was determined; no printing of output

Nov 4, 2022 Sprenkle - CSCI209 8

8

11/7/22

5

Single Responsibility Principle

Nov 4, 2022 Sprenkle - CSCI209 9

9

Single Responsibility Principle (SRP)

•Intuition:
ØEach responsibility is an axis of change
•More than one reason to change

ØResponsibilities become coupled
•Changing one may affect the other
•Code breaks in unexpected ways

Nov 4, 2022 Sprenkle - CSCI209 10

There should never be more than one reason for a class to change

This idea has come up before in class. Give an example of adhering to SRP.

10

11/7/22

6

Example

•Reasonable interface
•But has more than one responsibility
•Check:

ØChange for different reasons?
ØCalled from different parts of program?

Nov 4, 2022 Sprenkle - CSCI209 11

interface Network {
public void connect();
public void disconnect();
public void send(String s);
public String receive();

}

Serverport

11

Example

• Reasonable interface
• But has more than one responsibility
• In Java

Ø Socket class does connect/disconnect
ØUse separate Streams to send and receive data on the Socket

Nov 4, 2022 Sprenkle - CSCI209 12

interface Network {
public void connect();
public void disconnect();
public void send(String s);
public String receive();

}

Serverport

12

11/7/22

7

Open-Closed Principle (OCP)

• Bertrand Meyer
ØAuthor of Object-Oriented Software Construction

• Foundational text of OO programming
• Design modules that never change after completely

implemented
• If requirements change, extend behavior by adding code

ØBy not changing existing code à we won’t create bugs!
Nov 7, 2022 Sprenkle - CSCI209 13

Principle: Software entities (classes, modules, methods, etc.)
should be open for extension but closed for modification

13

Attributes of Software that Adhere to OCP
•Open for Extension
ØBehavior of module can be extended
ØMake module behave in new and different ways

•Closed for Modification
ØNo one can make changes to module

Nov 7, 2022 Sprenkle - CSCI209 14

These attributes seem to be at odds with each other.
How can we resolve them?

14

11/7/22

8

OCP Solution: Use Abstraction
•Abstract base class or interface
ØFixed abstraction à API
ØCannot be changed (closed to modification)

•Derived classes: possible behaviors
ØCan always create new child classes of abstract base

class
Ø(Open to extension)

Nov 7, 2022 Sprenkle - CSCI209 15

15

OCP Solution: Use Abstraction
• Abstract base classes or interfaces

ØFixed abstraction à API
ØCannot be changed (closed to modification)

• Derived classes: possible behaviors
ØCan always create new child classes of abstract base class
Ø(Open to extension)

• Example: Create a new Baddie for Game
1. Add a new Baddie class that derives from GamePiece
2. Replace old goblin instantiation with new baddie in game
3. DONE!

Nov 7, 2022 Sprenkle - CSCI209 16

16

11/7/22

9

Not Open-Closed Principle
•Client uses Server class

Nov 7, 2022 Sprenkle - CSCI209 17

Client Server

public class Client {
public void method(Server x) {

…
}

}

17

public class Client {
public void method(AbstractServer x) {

// method implementation uses only methods
// from AbstractServer
…

}
}

Open-Closed Principle
•Client uses AbstractServer class

Nov 7, 2022 Sprenkle - CSCI209 18

Client Abstract
Server

Server

extends Server2

Or ServerInterface

18

11/7/22

10

public class Client {
public void method(AbstractServer x) {

…
}

}

Open-Closed Principle
•Client uses AbstractServer class

Nov 7, 2022 Sprenkle - CSCI209 19

Client Abstract
Server

Server

extends Server2

Or ServerInterface

client.method(server);
client.method(server2);

19

Strategic Closure
•No significant program can be completely closed
•Must choose which changes to close
ØRequires knowledge of users, probability of changes

Nov 7, 2022 Sprenkle - CSCI209 20

Goal: Most probable changes
should be closed

20

11/7/22

11

Heuristics and Conventions
• Member variables are private

ØA method that depends on a variable cannot be closed to
changes to that variable

ØThe class itself can’t be closed to it
ØAll other classes should be

• No global variables
ØEvery module that depends on a global variable cannot be

closed to changes to that variable
ØWhat happens if someone uses variable in unexpected way?
ØCounter examples: System.out, System.in

Nov 7, 2022 Sprenkle - CSCI209 21
➥Apply abstraction to parts you think are going to change

21

Designing Systems

•Questions to consider:
ØHow can we create designs that are stable in the face of

change?
ØHow do we know if our designs aren’t maintainable?
ØWhat can we do if our code isn’t maintainable?

•Answers will help us
ØDesign our own code
ØUnderstand others’ code

Nov 4, 2022 Sprenkle - CSCI209 22

All systems change during their life cycle

22

11/7/22

12

Code Smells

• Duplicated code
• Long method
• Large class
• Long parameter list
• Very similar child classes
• Too many public variables
• Empty catch clauses

• Switch statements/long if
statements

• Shotgun surgery
• Literals
• Global variables
• Side effects
• Using instanceof

Nov 4, 2022 Sprenkle - CSCI209 23

A hint in the code that something
could be designed better

23

Code Smell Case Study: Duplicated Code
•What’s the problem with duplicated code?
•Why do we like it?

ØWhat made us write the duplicated code?
•Refactor: How can we get rid of the duplicate code?

ØConsider different possibilities for where the duplicate
code is
• Same expression multiple times in a class
• Duplicate code in 2 sibling child classes
• Duplicate code in unrelated classes

Nov 7, 2022 Sprenkle - CSCI209 24

24

11/7/22

13

Problem of Duplicated Code
•If code changes, need to change in every location
•Duplicate effort to test code to make sure it

works
ØMore statements for test suite to test!

•When trying to search for code, may find a
duplicate codeà not the one you’re looking for
ØIncreased effort in debugging

Nov 7, 2022 Sprenkle - CSCI209 25

25

Duplicated Code Refactorings
•Consider: same expression multiple times in one

class
•Solution: Extract method
ØCall method from those two places

•Benefits:
ØReduces redundant code
ØMakes code easier to debug, test

Nov 7, 2022 Sprenkle - CSCI209 26

26

11/7/22

14

Duplicated Code Refactorings
•Consider: duplicated code in 2 sibling child

classes
•Solution: Extract method, put

into parent class
ØEclipse: extract method, pull up

•If similar but not duplicate, extract the duplicate
code or parameterize

Nov 7, 2022 Sprenkle - CSCI209 27

Parent

Sib1 Sib2

27

Duplicated Code Refactorings
•Consider: duplicated code in unrelated classes
•Ask: where does method belong?
•One solution:

ØExtract class
ØUse new class in current classes

•Another solution:
ØKeep in one class
ØOther class calls that method

Nov 7, 2022 Sprenkle - CSCI209 28

Why so much time on duplicated code?
It’s a common yet costly problem.

28

11/7/22

15

Discussion: Duplicate Code
•Consider some code examples from the

semester:
1. Object and Birthday both have

equals(Object o) methods
2. Goblin and Human both have takeTurn(Game

game) methods
•Do they have duplicate code? Were they poorly

designed?
Nov 7, 2022 Sprenkle - CSCI209 29

29

Discussion: Duplicate Code
•Consider some code examples from the

semester:
1. Object and Birthday both have

equals(Object o) methods
2. Goblin and Human both have takeTurn(Game

game) methods
•Do they have duplicate code? Were they poorly

designed?
Nov 7, 2022 Sprenkle - CSCI209 30

No! Having the same method signature
does not necessarily mean that

they have duplicate code.

30

11/7/22

16

Refactoring: Solution to Code Smells

Nov 7, 2022 Sprenkle - CSCI209 31

After refactoring your code, what should you do next?

Refactoring: Updating a program to
improve its design and maintainability

without changing its current functionality significantly

31

Revised Process to Write Maintainable Code
Apply the design principles, but as your code
evolves, you’ll see that you didn’t always adhere to
the principles
1.Identify code smell
2.Refactor code to remove code smell
3.Test to confirm code still works!

Nov 7, 2022 Sprenkle - CSCI209 32

32

11/7/22

17

Looking Ahead
•Tuesday: Andy Ramlatchan’s talk
•Wednesday: JUnit Testing Project due
•Thursday: Individual analysis due
•Friday-Sunday: Exam 2

Nov 7, 2022 Sprenkle - CSCI209 33

33

