
11/9/22

1

Objectives
•Code Smells
•Design Patterns
•Exam 2 Review

Nov 9, 2022 Sprenkle - CSCI209 1

1

Review
1. Rumor has it that Elon Musk ranked programmers by the number of

lines of code they wrote last year and fired those at the bottom of that
list because they were less productive. Is that a good metric to use?
Why or why not?

2. What is guaranteed in software development?
3. What are best practices in object-oriented design?

Ø Provide an example of the practice (in our assignments, in our discussions,
in Java, …)

4. Define code smell. What is an example of a code smell? How do we
address that code smell?
Ø What is common to how we address code smells?

5. What is the process for writing maintainable code?
Ø Define terms in that process

Nov 9, 2022 Sprenkle - CSCI209 2

2

11/9/22

2

Review: Designing Systems

•Questions to consider:
ØHow can we create designs that are stable in the face of

change?
ØHow do we know if our designs aren’t maintainable?
ØWhat can we do if our code isn’t maintainable?

•Answers will help us
ØDesign our own code
ØUnderstand others’ code

Nov 9, 2022 Sprenkle - CSCI209 3

All systems change during their life cycle

3

Review: Open-Closed Principle

• Design modules that never change after completely
implemented

• If requirements change, extend behavior by adding code
ØBy not changing existing code à we won’t create bugs!

• Closed: APIs/interfaces
• Open: add new implementations

Nov 9, 2022 Sprenkle - CSCI209 4

Principle: Software entities (classes, modules, methods, etc.)
should be open for extension but closed for modification

4

11/9/22

3

Refactoring: Solution to Code Smells

Nov 3, 2021 Sprenkle - CSCI209 5

After refactoring your code, what should you do next?

Refactoring: Updating a program to
improve its design and maintainability

without changing its current functionality significantly

5

Revised Process to Write Maintainable Code
Apply the design principles, but as your code
evolves, you’ll see that you didn’t always adhere to
the principles
1.Identify code smell
2.Refactor code to remove code smell
3.Test to confirm code still works!

Nov 9, 2022 Sprenkle - CSCI209 6

6

11/9/22

4

Review: Code Smells

• Duplicated code
• Long method
• Large class
• Long parameter list
• Very similar child classes
• Too many public variables
• Empty catch clauses

• Switch statements/long if
statements

• Shotgun surgery
• Literals
• Global variables
• Side effects
• Using instanceof

Nov 9, 2022 Sprenkle - CSCI209 7

A hint in the code that something
could be designed better

7

Code Smells
• For each of the following code smells, state

ØWhy these may occur in code
ØWhy they are a problem in terms of maintaining code

• Cite design principles as appropriate
ØHow to fix them

• Code smells:
1. Long methods
2. Large class
3. Magic numbers (e.g., -1 or 480 in code)
4. Comments (not API/Javadoc comments)

Nov 3, 2021 Sprenkle - CSCI209 8

Front two rows: 1, 3
Back two rows: 2, 4
Door side: swap order

8

11/9/22

5

Code Smell: Long Methods
•What’s the problem with long methods?
•What made us write them?
•How can we fix them?
•What is an issue with lots of short methods?

Nov 3, 2021 Sprenkle - CSCI209 9

9

Long Methods: Issues and Solutions
• Issues:

ØHard to understand (see) what method does
ØHarder to change because code gets coupled

• Solution:
ØFind lines of code that go together (may be identified by a

comment) and extract method
• Critique of refactored, smaller methods

ØSmaller methods have reader overhead
• Look at code for called methods
• But, use descriptive names for methods
• In Eclipse, use F3 to jump to a method’s definition

Nov 3, 2021 Sprenkle - CSCI209 10

10

11/9/22

6

Code Smell: Large Class
•What could be the problem?

Nov 3, 2021 Sprenkle - CSCI209 11

11

Large Class
•Issue: Too many instance variables à trying to do

too much
ØViolates Single Responsibility Principle

•Solutions:
ØBundle groups of variables together into another class

• Look for common prefixes or suffixes
ØIf includes optional instance variables (only sometimes

used), create child classes
ØLook at how users use the class for ideas of how to break

it up
Nov 3, 2021 Sprenkle - CSCI209 12

Eclipse: Refactor à Extract Class or Extract Superclass

12

11/9/22

7

Literals or Magic Numbers
•If a number has a special meaning, make it a

constant
•Example: Distinguish between 0 and

NO_VALUE_ASSIGNED
ØIf value changes (e.g., -1 instead of 0), only one place

to change
ØLess error-prone (e.g., was I using 1 or -1?)

Nov 3, 2021 Sprenkle - CSCI209 13
Eclipse: Refactor à Extract Constant

13

Comments

ØDescribe what the code or method is doing
ØShould be reserved for why, not what

•Solutions:
ØIf need a comment for a block of code (or a long

statement) à create a method with a descriptive name
ØIf need a comment to describe method, rename method

with more descriptive name

Nov 3, 2021 Sprenkle - CSCI209 14

Problem: Comments used as Febreze to cover up smells

These [internal] comments are different from API comments

14

11/9/22

8

More Code Smells
•Discuss more code smells and solutions (Design

Patterns) later

Nov 3, 2021 Sprenkle - CSCI209 20

20

Software Design Rules of Thumb
•Code smells are not always bad
ØDo not always mean code is poorly designed

•Open code is not always bad
•Need to use your judgment
ØGood judgment comes from experience.
ØHow do you get experience? Bad judgment works

every time

Nov 3, 2021 Sprenkle - CSCI209 21
Goal: Gain experience to improve your judgment

21

11/9/22

9

Refactoring Summary
• Write code and then rewrite code

ØEye toward extensibility, flexibility, maintainability, and readability
ØMaintain correctness

• Reading/understanding other people’s code can be difficult
ØMake your code readable, understandable

• Probably impossible to design/write “correctly” the first time
ØA lot harder to get the logic right, make sure you’re not creating

bugs, know/check the right answer…
ØDon’t necessarily know what is likely to change

Nov 3, 2021 Sprenkle - CSCI209 22

22

DESIGN PATTERNS
How can we create designs that are stable in the face of change?

Nov 9, 2022 Sprenkle - CSCI209 23

23

11/9/22

10

Design Pattern

•Not a finished design that can be transformed
directly into code

•Description or template for how to solve a problem
that can be used in many different situations
Ø“Experience reuse” rather than code reuse

Nov 9, 2022 Sprenkle - CSCI209 24

General reusable solution to a commonly
occurring problem in software design

24

Defined Design Patterns
•Software best practices
•Catalogued and discussed in

Design Patterns: Elements of Reusable Object-
Oriented Software
ØWritten by the “Gang of Four”: Erich Gamma,

Richard Helm, Ralph Johnson, and John Vlissides
•Erich Gamma also co-wrote original JUnit framework

ØDidn’t design the patterns; identified them

Nov 9, 2022 Sprenkle - CSCI209 25

25

11/9/22

11

Understanding Code with Design Patterns
1.Recognize design pattern in code base you’re

using
2.Understand code design better

Nov 9, 2022 Sprenkle - CSCI209 26

26

Applying Design Patterns
1.Recognize problem as one that can be solved by

a design pattern
2.Apply pattern to your problem

Nov 9, 2022 Sprenkle - CSCI209 27

Danger: over-applying design patterns
Ø Fall back: Identify and resolve code smells

27

11/9/22

12

•Design Pattern: Composition
ØUsing other objects in your class
Ø“Delegate” responsibilities to this object

Nov 9, 2022 Sprenkle - CSCI209 28

Why is composition preferred over inheritance?

Design Principle:
Favor Composition Over Inheritance

28

•Design Pattern: Composition
ØUsing other objects in your class
Ø“Delegate” responsibilities to this object

•Why is composition preferred over inheritance?
ØInheritance à dependence on parent class

• Only want to depend on things you know won’t change (higher
stability)

ØComposition: Provide different behaviors for your class by
plugging in new object

Nov 9, 2022 Sprenkle - CSCI209 29

Design Principle:
Favor Composition Over Inheritance

29

11/9/22

13

Refactoring is not just a Java Thing

Nov 9, 2022 Sprenkle - CSCI209 30

Check if path exists. if it doesn’t, exist create directory
if not os.path.exists(config['output_dir'] +

config['app_name'] + config['bot_dir'] + 'analysis'):
os.makedirs(config['output_dir'] +

config['app_name'] + config['bot_dir'] + 'analysis')
print("Created directory for" + config['output_dir'] +

config['app_name'] + config['bot_dir'] + 'analysis')

Before:

30

Refactoring is not just a Java Thing

Nov 9, 2022 Sprenkle - CSCI209 31

Check if path exists. if it doesn’t, exist create directory
outputDir = config['output_dir'] +

config['app_name'] + config['bot_dir'] + 'analysis'
if not os.path.exists(outputDir):

os.makedirs(outputDir)
print("Created directory for", outputDir)

Check if path exists. if it doesn’t, exist create directory
if not os.path.exists(config['output_dir'] +

config['app_name'] + config['bot_dir'] + 'analysis'):
os.makedirs(config['output_dir'] +

config['app_name'] + config['bot_dir'] + 'analysis')
print("Created directory for" + config['output_dir'] +

config['app_name'] + config['bot_dir'] + 'analysis')

Before:

After:

31

11/9/22

14

Exam 2 Discussion
•Similar format to Exam 1

ØTimed (70 minutes), online
ØOpen book/notes/slides NOT internet
Ø3 “sections” – very short answer, short answer, applied
ØOpen Friday at 8:30 a.m. through Sunday at 11:59 p.m.

•Content covers through today’s class
•I will hold office hours during Friday’s class times
•Prep document posted

Nov 9, 2022 Sprenkle - CSCI209 32

32

