
11/14/22

1

Objectives
•Analysis and Design
•Interpreting programming languages
•Final Project: Picasso

Nov 14, 2022 Sprenkle - CSCI209 1

1

Final Project: Picasso Specification
•User can enter expressions
ØInteractively or from file
ØLanguage is defined in specification

•Many possible extensions

Nov 14, 2022 Sprenkle - CSCI209 2

2

11/14/22

2

Project Deliverables Timeline
Deliverable Who Weight Due Date

Preparation Analysis Individual 10% Fri, Nov 18

Preliminary
Implementation Team 15% Fri, Dec 2

Intermediate
Implementation Team 15% Fri, Dec 9

Final Implementation Team 45% Team decides
àlatest 12/15

Analysis Individual 15% Fri, Dec 16

Nov 14, 2022 Sprenkle - CSCI209 3

Week 1: Understand code base, analyze/plan project
Week 2: Implement preliminary functionality
Week 3: Implement intermediate functionality
Week 4: Implement final version of application

Before class

3

Teams

Fantastics Charlotte Jacob Jared Katie

Supremes Colin Drew Hussiny Yoseph

Dreamers Julia Malachi Ngoc Anh Stephen

Nov 14, 2022 Sprenkle - CSCI209 4

Teams, alphabetically by first name

4

11/14/22

3

Teams
Innovators Jake Jaylen Luke Selly

Allies Ignas Jack Joe Uno

MVPs Grace Harry Julie Matthew

Legends Beza Elizabeth Mitchell Nick

Champions Fekry Matt Ngoc Petra

Nov 14, 2022 Sprenkle - CSCI209 5

Teams, alphabetically by first name

5

ANALYSIS & DESIGN: FORMALIZED

Nov 14, 2022 Sprenkle - CSCI209 6

6

11/14/22

4

Analysis Phase
•Create an abstract model in client’s vocabulary
•Strategy:

1. Identify classes that model (shape) system as set of
abstractions

2. Determine each class’s purpose or main responsibility
• API
• State

3. Determine helper classes for each
• Help complete responsibilities

Nov 14, 2022 Sprenkle - CSCI209 7

“Doohickey”

7

Analysis Phase Discussion
•Expect to iterate

ØWon’t find all classes at first
• Especially helpers

ØWon’t know all responsibilities
•Uncertainty in problem statement

ØMay be concerns that need to be settled
ØTry to understand requested software system at level of

those requesting software
•Rarely one true correct best design

Nov 14, 2022 Sprenkle - CSCI209 8

8

11/14/22

5

Identification of Classes
•Potentially model the system
•Usually nouns from problem description or from

domain knowledge
•Model real world/problem domain whenever

possible
ØMore understandable software
ØHelps during maintenance when someone unfamiliar

with system must update/fix code
Nov 14, 2022 Sprenkle - CSCI209 9

9

Identifying Responsibilities
•Responsibilities convey purpose of class, its role

in system
•Questions to Ask:
ØWhat are the other responsibilities needed to model

the solution?
•Which class should take on this particular responsibility?

ØWhat classes help another class fulfill its
responsibility?

Nov 14, 2022 Sprenkle - CSCI209 10

10

11/14/22

6

Have You Modeled Everything?
• Strategy: Role playing
• Act as different classes: can you do everything you want in

various scenarios?
ØFill in missing classes, responsibilities
ØMethods: parameters, what returned
ØRestructure as necessary

• No code yet so not actually refactoring
• Example use cases/scenarios:

ØA student tries to register for a class with no open seats
ØA professor looks at students’ interim grades

Nov 14, 2022 Sprenkle - CSCI209 11

11

Definition of Use Case?
•Description of steps or actions between a user

and a software system towards some goal

•What else can use cases be used for?
ØTest Cases!

Nov 14, 2022 Sprenkle - CSCI209 12

12

11/14/22

7

TEAM FINAL PROJECT

Nov 14, 2022 Sprenkle - CSCI209 13

13

Project Metrics
•>1700 lines of code
ØEven more by the time your team is done

•Good for gaining experience
ØLarge (for a course) piece of existing code that you

need to build on

•Good for job interviews
ØKnow the number of lines of code

Nov 14, 2022 Sprenkle - CSCI209 14

14

11/14/22

8

Final Project: Picasso Specification
•User can enter expressions
ØInteractively or from file
ØLanguage is defined in specification

•Many possible extensions

Nov 14, 2022 Sprenkle - CSCI209 15

15

Picasso Project Overview
• Goal: Generate images from expressions
• Every pixel at position (x,y) gets assigned a color,

computed from its x- and y-coordinate and
the given expression
ØRange for x and y is [-1, 1]

• Colors are represented as RGB
(red, green, blue) values
ØR, G, B component’s range: [-1, 1]
ØBlack is [-1,-1,-1]
ØRed is [1,-1,-1]
ØYellow is [1, 1,-1]

Nov 14, 2022 Sprenkle - CSCI209 16

(-1, -1) x

y

(1, 1)

(1, -1)

(-1, 1)

How is white represented?

Points are (x,y)

16

11/14/22

9

Generating Images from Expressions
•Expressions at a specific (x,y) point/pixel evaluate

to RGB colors [r,g,b]
Ø pixels[x][y] = expression.evaluate(x, y)

•x evaluates to RGB color [x, x, x]
•In top right corner,
• x evaluates to [1, 1, 1]
• y evaluates to [-1, -1, -1]

Nov 14, 2022 Sprenkle - CSCI209 17

(-1, -1) x

y

(1, 1)

(1, -1)

(-1, 1)

17

Generating Images from Expressions

Nov 14, 2022 Sprenkle - CSCI209 18

(-1, -1) x

y

(1, 1)

(1, -1)

(-1, 1)

For all x:
For all y:

pixels[x][y] = expression.evaluate(x, y)

Consider evaluating expression as
f(x, y) = expression

at various points in the image

18

11/14/22

10

Generating Images from Expressions

Nov 14, 2022 Sprenkle - CSCI209 19

(-1, -1) x

y

(1, 1)

(1, -1)

(-1, 1)

For all x:
For all y:

pixels[x][y] = expression.evaluate(x, y)

Consider evaluating expression as
f(x, y) = expression

at various points in the image

Example: expression is x+y

19

Generating Images from Expressions

Nov 14, 2022 Sprenkle - CSCI209 20

For all x:
For all y:

pixels[x][y] = expression.evaluate(x, y)

[-1, -1, -1] x

y

[1, 1, 1]

[0, 0, 0]

[0, 0, 0]

Consider evaluating expression as
f(x, y) = expression

at various points in the image

Example: expression is x+y

[0, 0, 0]

20

11/14/22

11

Generating Images from Expressions

Nov 14, 2022 Sprenkle - CSCI209 21

For all x:
For all y:

pixels[x][y] = expression.evaluate(x, y)

(-1, -1) x

y

(1, 1)

(1, -1)

(-1, 1)

Consider evaluating expression as
f(x, y) = expression

at various points in the image

Example: expression is x+y

Resulting image:
• Recall that color range is clamped to range [-1, 1]
• Yellow outline for framing purposes only

[0, 0, 0]

[0, 0, 0]

[0, 0, 0] [1, 1, 1]

[-1, -1, -1]

21

Generating Images from Expressions

Nov 14, 2022 Sprenkle - CSCI209 22

(-1, -1) x

y

(1, 1)

(1, -1)

(-1, 1)

For all x:
For all y:

pixels[x][y] = expression.evaluate(x, y)

Consider evaluating expression as
f(x, y) = expression

at various points in the image

What is the resulting image if the expression is
• [-1, 1, -1] ?
• x ?
• x*y ?

22

11/14/22

12

Generated Images from Expressions

Nov 14, 2022 Sprenkle - CSCI209 23

For all x:
For all y:

pixels[x][y] = expression.evaluate(x, y)

[-1, 1, -1] x x*y

If you click “Evaluate” in Picasso currently,
it evaluates the expression floor(y)

23

PROCESSING PROGRAMMING LANGUAGES

Nov 14, 2022 Sprenkle - CSCI209 24

24

11/14/22

13

Programming Language Syntax & Semantics
•What does an assignment statement look like in

Java?
ØWhat can be on the left hand side?
•What are the rules for an identifier in Java?

ØWhat can be on the right hand side?
•What does a multiplication expression look like?
•How do we evaluate arithmetic expressions?

Nov 14, 2022 Sprenkle - CSCI209 25

25

Programming Language Design
•Must be unambiguous
ØProgramming Language defines a syntax and
semantics

•Interpreting programming languages
1. Parse program into tokens
2. Verify that tokens are in a valid form
3. Generate executable code
4. Execute code

Nov 14, 2022 Sprenkle - CSCI209 26

26

11/14/22

14

Parsing into Tokens
•Example: x = 4*3; à

•Example: x = * 3 5;

•Tokenizer doesn’t care if statement is not valid
Øhandled in next step

•Error example: 1x = 4**3;
Ø1x and ** are not valid tokens in Java

Nov 14, 2022 Sprenkle - CSCI209 27

<id> <assignment> <num> <mult> <num> <endofstmt>

<id> <assignment> <mult> <num> <num> <endofstmt>

27

Interpreting the Picasso Language

Nov 14, 2022 Sprenkle - CSCI209 28

Lexical
Analyzer

Semantic
Analyzer

Error

Error

Expression
Tree

Interpreter

Picasso
Expression

TokenTokenTokens

OR

OR

Evaluation of
expression

Draw on
canvas

28

11/14/22

15

Interpreting the Picasso Language

Nov 14, 2022 Sprenkle - CSCI209 29

Lexical
Analyzer

Semantic
Analyzer

Error

Error

Expression
Tree

Interpreter

Picasso
Expression

TokenTokenTokens

OR

Mult

X Y
OR

Evaluation of
expression

Draw on
canvas

x*y

<x>
<mult>
<y>

29

What We Need to Do/Represent
•Lexical Analysis

•Semantic Analysis

•Evaluation

Nov 14, 2022 Sprenkle - CSCI209 30

30

11/14/22

16

What We Need to Do/Represent
• Lexical Analysis

ØRecognize/create tokens
ØReport errors in creating tokens

• Semantic Analysis
ØConvert infix tokens into postfix

• Report errors
ØParse tokens into expressions (expression tree)

• Report errors
• Evaluation

ØEvaluate expressions

Nov 14, 2022 Sprenkle - CSCI209 31

31

Process of Understanding Code:
Building Your Mental Model
•Apply spiral model to understanding code
•Review problem specification (low-cost effort)
•Explore project at the top-level (low-cost effort)
ØLook at packages, class names
ØDon’t take a deep-dive until you have the bigger

picture

Nov 14, 2022 Sprenkle - CSCI209 32

https://cs.wlu.edu/~sprenkles/cs209/projects/picasso/doc/

32

11/14/22

17

Understanding the Code
•How does the given code map to lexical analysis,

semantic analysis, and evaluation components?
ØLook for packages, classes that map to these steps

Nov 14, 2022 Sprenkle - CSCI209 33

33

Process of Understanding Code:
Building Your Mental Model
•Look for important words/terms from problem

domain
•Look for terms from design patterns
•Put code in black boxes or group code together

Nov 14, 2022 Sprenkle - CSCI209 34

34

11/14/22

18

Process of Understanding Code:
Building Your Mental Model
• After you have the big picture, look at most important classes
• Decide: Does this class merit a closer look? Or do I just need

the big picture of what it does?
ØLean towards the latter towards the beginning

• Iterate!
ØGrow your mental model
ØWhat a “closer look” means changes over time

• Early: what methods does the class have? What classes does this object
interact with?

• Later: what do these methods do? How does this class interact with other
objects?

Nov 14, 2022 Sprenkle - CSCI209 35

35

Understanding the Code
•How does the given code map to lexical analysis,

semantic analysis, and evaluation components?
ØLook for packages, classes that map to these steps

Nov 14, 2022 Sprenkle - CSCI209 36

36

11/14/22

19

TODO
•Project Analysis due Friday

Nov 14, 2022 Sprenkle - CSCI209 37

37

