Objectives

® Picasso Design

® Reflection
®eGUIs in Java

Anonymous inner classes

Nov 16, 2022

Sprenkle - CSCI209

Typical Trajectory of Projects

Nov 16, 2022

Understanding/confidence

A

This code is too complex!
| can’t understand this/do this project!

Time committed to project

Sprenkle - CSCI209

v

Typical Trajectory of Projects

Nov 16, 2022

Understanding/confidence

AN

This code is too complex!
| can’t understand this/do this project!

v

Time committed to project

Sprenkle - CSCI209

Typical Trajectory of Projects

Nov 16, 2022

Understanding/confidence

A

| am starting to get it.
| have the mental model for the code base
This code is too complex!
| can’t understand this/do this project!

v

Time committed to project

Sprenkle - CSCI209

Typical Trajectory of Projects

Nov 16, 2022

Understanding/confidence

AN

| am confident enough to write a little code
| am starting to get it.
| have the mental model for the code base
This code is too complex!
| can’t understand this/do this project!

v

Time committed to project

Sprenkle - CSCI209

Typical Trajectory of Projects

Nov 16, 2022

Understanding/confidence

4

N

| getit! | am writing code
and redesigning as necessary
| am confident enough to write a little code
| am starting to get it.
| have the mental model for the code base

This code is too complex!
| can’t understand this/do this project!

v

Time committed to project

Sprenkle - CSCI209

Our Responsibilities

A You: Adopt a growth mindset.

Try, Learn, Ask questions
Me: Support, Cheerlead, Answer questions

| getit! | am writing code
and redesigning as necessary
| am confident enough to write a little code

| am starting to get it.
| have the mental model for the code base

Understanding/confidence

This code is too complex!
| can’t understand this/do this project!

v

Time committed to project

Nov 16, 2022 Sprenkle - CSCI209

Review

® What is the goal of the Picasso project?

® When you click the Evaluate button in the given version of Picasso, it
generates the image for floor(y)

Explain why the generated image looks like this:
® |nclude the constraints/rules of Picasso

® How does an interpreter interpret a programming language?

® What should we think about during design and analysis of a project?
What are best practices?

® How should we learn a code base?

Nov 16, 2022 Sprenkle - CSCI209

Review: Picasso Project Overview

® Goal: Generate images from expressions

® Every pixel at position (x,y) gets assigned a color,
computed from its x and y coordinate and
the given expression
Range forxandyis [-1, 1]
® Colors are represented as RGB
[red, green, blue] values
Component’s range [-1, 1]
Black is [-1,-1,-1]
Red is [1,-1,-1]
Yellow is [1, 1,-1]

Points are (x,y)
-1,-1 X 1, -1

-1,1 1,1

Nov 16, 2022 Sprenkle - CSCI209 9

Review: Generating Images from Expressions

® Expressions at a specific (x,y) point/pixel evaluate
to RGB colors [r,g,b]

pixels[x][y] = expression.evaluate(x, y)

® x evaluates to RGB color [x, x, x]

®|n top right corner, bl x b
X evaluates to [1, 1, 1]

y evaluates to [-1, -1, -1]

-1,1 1,1

Nov 16, 2022 Sprenkle - CSCI209 10

10

Review: Generated Expressions

1] X x*y

[_17 1’ -

For all x:
For all y:
pixels[x][y] = expression.evaluate(x, y)

Nov 16, 2022 Sprenkle - CSCI209 11

11

Review: Programming Language Design

®* Must be unambiguous

Programming Language defines a syntax and
semantics

® Interpreting programming languages
Parse program into tokens
Verify that tokens are in a valid form
Generate executable code
Execute code

Nov 16, 2022 Sprenkle - CSCI209

12

Review: Interpreting the Picasso Language

Picasso
Expression :-
Expression
Evaluation of Tree fi: :;
expression
Semantic
L Interpreter b

OR _ Analyzer
Draw on Error
canvas

Nov 16, 2022 Sprenkle - CSCI209 13

13

Understanding the Code

®* How does the given code map to lexical analysis,
semantic analysis, and evaluation components?

Look for packages, classes that map to these steps
® Suggestions:
Look for important words/terms from problem domain

Look for terms from design patterns
Put code in black boxes or group code together

® Task: Label the process picture with the associated
packages/classes

Nov 16, 2022 Sprenkle - CSCI209 14

14

Process of Understanding Code:

Building Your Mental Model
® Look for important words/terms from problem

domain
® | ook for terms from design patterns
® Put code in black boxes or group code together

PY Example. Tokenizer,
: Java’s StreamTokenizer tokens . *
Picasso
Expression :- Tok
okens

Nov 16, 2022 Sprenkle - CSCI209 15

15

Interpreting the Picasso Language
Tokenizer,

Java’s StreamTokenizer

Picasso
Expression l:-

OR

tokens. *

Expression
Evaluation of Tree
expression
Semantic
L Interpreter b OR | o —
Draw on
canvas parser.*

expressions.*

Nov 16, 2022 Sprenkle - CSCI209 16

16

Process of Understanding Code:
Building Your Mental Model

® Apply spiral model to understanding code
® Review problem specification (low-cost effort)

® Explore code at the top-level (low-cost effort)
Look at packages, class names

Don’t take a deep-dive until you have the bigger
picture

Nov 16, 2022 Sprenkle - CSCI209 17

17

Process of Understanding Code:
Building Your Mental Model

® After you have the big picture, look at most important classes
® Decide: Does this class merit a closer look? Or do | just need
the big picture of what it does?
Lean towards the latter towards the beginning
® |[terate!
Grow your mental model

What a “closer look” means changes over time

® Early: what methods does the class have? What classes does this object
interact with?

® |ater: what do these methods do? How does this class interact with other
objects?

Nov 16, 2022 Sprenkle - CSCI209 18

18

Interpreting the Picasso Language

mn X*y"
<id:x>
Picasso <mult>
Expression j <id:y>

Tokens

Expression
Evaluation of Tree

expression @

Semantic
Interpreter X O
Analyzer

Draw on
canvas

Nov 16, 2022 Sprenkle - CSCI209 19

19

Interpreting the Picasso Language
"floor(y)"

<floor>
: <lparen>
Picasso .p.
) <id:y>
Expression <rparen>

Expression
Evaluation of Tree
expression @
Semantic
t Interpreter ™) B | Analyzer
Draw on
canvas

Nov 16, 2022 Sprenkle - CSCI209 20

20

Understanding the Code: Lexical Analysis

® Process
picasso.parser.Tokenizer
picasso.parser.tokens.TokenFactory
® Qutput:
picasso.parser.tokens.*

Nov 16, 2022 Sprenkle - CSCI209 F]_OO r'TO ken 21

21

Understanding the Code: Semantic Analysis

® Process
picasso.parser.ExpressionTreeGenerator
picasso.parser.SemanticAnalyzer
picasso.parser.*Analyzer

® Qutput
plicasso.parser.language.expressions.*

Nov 16, 2022 Sprenkle - CSCI209 Floo |"AI’]C|].yzel'1

22

Understanding the Code: Evaluation

® Process

plicasso.parser.language.
ExpressionTreeNode

® Qutput:

pl1Ccasso.parser.language.expressions.
RGBColor

®Displayed in P1xMap on Canvas

Nov 16, 2022 Sprenkle - CSCI209 Floor 23

23

Understanding the Code: Evaluation

® Key Parent class:
picasso.parser.language.ExpressionTreeNode

public abstract RGBColor evaluate(double x, double y);

® “0Old” version of expressions:
ReferenceForExpressionEvaluations

Nov 16, 2022 Sprenkle - CSCI209

24

Using Reflection in Java

® Reflection allows us to create objects of a class
using the name of the class

® Example adapted from MutantMaker:

public static void initMutantMaker() {
mutants = new Mutant[numMutants];
mutants[@] = new Wolverine();
for (int 1 = 1; i < numMutants; i++) {
Class<?> mutantClass;
try {
mutantClass = Class. forName("mutants.Mutant"+ 1i);
mutants[i] = (Mutant)
mutantClass.getDeclaredConstructor().newInstance();
} catch (Exception e) {
e.printStackTrace();
}

}

Nov 16, 2022 } 25

25

Using Reflection in Java

® Can create objects of a class through the name of the class

® Used in SemanticAnalyzer
Gets list of functions
® Read from conf/functions.conf
Maps a token to the class responsible for parsing that type of
token

When SemanticAnalyzer sees that token, calls the respective
analyzer to parse

Example: FloorToken maps to the FloorAnalyzer

® FloorAnalyzer pops the Floor token off the stack and then parses the
(one) parameter for the floor function

Nov 16, 2022 Sprenkle - CSCI209 26

26

® Run program

eStart at Main. java

Follow calls to see how GUI is created
® Breadth- or depth-first search

What classes make up the GUI?
® GUIs often follow the MVC design pattern

Identify the model, view-controller in Picasso

Nov 16, 2022 Sprenkle - CSCI209 27

27

Model - Viewer - Controller (MVC)

® A common design pattern for GUIs

® L oosely coupled
Model: application data
View: graphical representation
Controller: input processing

Modifies Notifies
Model

Nov 16, 2022 Sprenkle - CSCI209

28

Model-Viewer-Controller

—_—
Modifies Notifies
Model

® Can have multiple viewers and controllers

® Goal: modify one component without affecting
others Controller |

Direct associations

| Model |==f View |

Nov 16, 2022 Sprenkle - CSCI209 29

29

Model

® Represents application state

Model

® Responsible for managing application state

® Purely functional
Nothing about how view presented to user

Nov 16, 2022 Sprenkle - CSCI209 30

30

Multiple Views

® Provides graphical components
for model

Look & Feel of the application
® User manipulates view —

————— =D
Informs controller of change e ==

® Example of multiple views: spreadsheet data
Rows/columns in spreadsheet

Pie chart, bar chart, ... _/

Nov 16, 2022 Sprenkle - CSCI209 31

31

Controller(s)
Controller
® Handles user input

® Update model as user interacts with view
Call model’s methods (often mutators)
Makes decisions about behavior of model based on Ul

®\/iews are associated with controllers

ov 16, 2022 Sprenkle - CSCI209 32

32

Discussion: Map MVC to Goblin Game

—_—
Modifies Notifies

® Can have multiple viewers and controllers

® Goal: modify one component without affecting
others Controller |

Direct associations /\
| Model €= View |

Nov 16, 2022 Sprenkle - CSCI209

33

33

sssssss

ButtonPanel

JButton
Picasso’s GUI uses classes from

two main Java packages:

* Abstract Windowing Toolkit:
Canvas java.awt
(displays Pixmap) * Swing: javax.swing

Nov 16, 2022 Sprenkle - CSCI209 34

34

Understanding GUI Code

®n ButtonPanel. java, buttons are associated
with a command or action

private Canvas myView;

public void add(String buttonText, final Command<Pixmap> action) {
JButton button = new JButton(buttonText);
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
action.execute(myView.getPixmap());
myView.refresh();

ks
1
add(button);

Nov 16, 2022 Sprenkle - CSCI209 35

35

Understanding GUI Code

®n ButtonPanel. java, buttons are associated
with a command or action

JButton’s ActionListener says
what to do when button is pressed

public void add(String buttonText, final Command<Pixmap> action) {
JButton button = new JButton(buttonText);
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
action.execute(myView.getPixmap());
myView.refresh();

private Canvas myView;

ks
3
add(button);

Nov 16, 2022 Sprenkle - CSCI209 36

36

Understanding GUI Code

®n ButtonPanel. java, buttons are associated
with a command or action

private Canvas myView;

public void add(String buttonText, final Command<Pixmap> action) {
JButton button = new JButton(buttonText);
button.addActionListener(new ActionlListener() {
public void actionPerformed(ActionEvent e) {
action.execute(myView.getPixmap());
myView.refresh();

ks
IO
add(button);

Nov 16, 2022 Sprenkle - CSCI209 37

37

Understanding GUI Code

®n ButtonPanel. java, buttons are associated
with a command or action

private Canvas myView;

public void add(@String buttonText, final Command<Pixmap>
JButton butfon = new JButton(buttonText):
button.addAttionListener(new ; Sstener() {
public jvoid i ormed(ActionEvent e) {
acfion.execute(myView.getPixmap());

myView.refresh(); Defines an anonymous inner class and
b ¥ creates an object of that type.
ada(button); Benefits: can access private data in class

Nov 16, 2022 Sprenkle - CSCI209 38

38

Anonymous Inner Classes

® Common way to write (certain) code
®No classname

Class is anonymous

® Extends a parent class or implements an interface
/the parent class/interface

new ActionlListener() {
public void actionPerformed(ActionEvent e) {

action.execute(myView.getPixmap());
} myView.refreshQ; Method implementations

}

Nov 16, 2022

Sprenkle - CSCI209 39

39

Picasso GUI: ButtonPanel

interface

JButton association Command
Command execute(T target)
(within ButtonPanel) 4 é

When button pressed, E‘t’az_lli_ator S
execute arge
call the command’s xecu g

execute method

sssssss

ButtonPanel

JButton

Nov 16, 2022

40

FACTORY DESIGN PATTERN

NNNNN , 2022 Sprenkle - CSCI209

41

Design Pattern: Factory Methods

® Allows creating objects without specifying exact
(concrete) class of created object

® Often used to refer to any method whose main
purpose is creating objects

®* How it works:
Define a method for creating objects

Child classes override method to specify the derived
type of product that will be created

Nov 16, 2022 Sprenkle - CSCI209

42

Factory Method Pattern

interface
. Product
implementation association
ConcreteProduct
Nov 16, 2022 UML CIa_SS Dlagram Sprenkle - CSCI209

abstract class

Creator

factoryMethod()
anOperation()

i implementation

ConcreteCreator

factoryMethod()

43

43

Dependency Inversion Principle

Depend upon Abstractions

“Inversion” from the way you think

Nov 16, 2022 Sprenkle - CSCI209

44

44

Understanding Picasso Code

eStart in Evaluator command’s execute method

Nov 16, 2022 Sprenkle - CSCI209

45

TODO

® Project Analysis due Friday before class

Nov 16, 2022 Sprenkle - CSCI209 46

46

