
11/27/22

1

Objectives
•Planning
•Team Work

Nov 18, 2022 Sprenkle - CSCI209 1

1

Review: Picasso
•It’s okay to be a little intimidated
•Let that motivate you
•But believe that you can tackle the project

Nov 18, 2022 Sprenkle - CSCI209 2

2



11/27/22

2

Review
•What is the Picasso project?
•What are the major components of the existing 

Picasso code base?
•What parts of project need to be completed?
•(Rhetorical) Who are your teammates?

Nov 18, 2022 Sprenkle - CSCI209 3

3

Picasso Architecture

Nov 18, 2022 Sprenkle - CSCI209 4

GUI
Picasso 

Language 
Interpreter

PixmapModel

View-
Controller

4



11/27/22

3

Review: Picasso GUI

Nov 18, 2022 Sprenkle - CSCI209 5

ButtonPanel

F r a m
e

Canvas 
(displays Pixmap)

JButton

Picasso’s GUI uses classes from two 
main Java packages:
• Abstract Windowing Toolkit: java.awt
• Swing: javax.swing

5

Review: Interpreting the Picasso Language

Nov 18, 2022 Sprenkle - CSCI209 6

Lexical 
Analyzer

Semantic 
Analyzer

Error

Error

Expression 
Tree

Interpreter

Picasso 
Expression

TokenTokenTokens

OR

OR

Evaluation of 
expression

Draw on 
canvas

tokens.*

parser.*
expressions.*

Tokenizer,
Java’s StreamTokenizer

6



11/27/22

4

Review: Interpreting the Picasso Language

Nov 18, 2022 Sprenkle - CSCI209 7

Lexical 
Analyzer

Semantic 
Analyzer

Expression 
Tree

Interpreter

Picasso 
Expression

TokenTokenTokens

Floor

Y

Evaluation of 
expression

Draw on 
canvas

"floor(y)"
<floor>
<lparen>
<id:y>
<rparen>

7

Interpreting the Picasso Language

Nov 18, 2022 Sprenkle - CSCI209 8

Lexical 
Analyzer

Semantic 
Analyzer

Expression 
Tree

Interpreter

Picasso 
Expression

TokenTokenTokens

Mult

X Y

Evaluation of 
expression

Draw on 
canvas

"x*y"
<id:x>
<mult>
<id:y>

8



11/27/22

5

Evaluator: Expression Evaluation

Nov 18, 2022 Sprenkle - CSCI209 9

Expression
TreeNode evaluate(double x, double y) RGBColor

Pixmap
(x,y) coordinates

Evaluate expression at each x, y coordinate
Returns the RGBColor that should be displayed 
at that coordinate

9

What Steps Need To Be Completed?
• Model: Images

Ø API
Ø State

• GUI
Ø Expression user interface 

(interactive)
Ø Open expression files (batch)
Ø Call Picasso interpreter
Ø Error handling

• Picasso interpreter
Ø Parse expressions (functions, 

operations, variables, …)
• Handle errors appropriately

Ø Evaluate expressions
• Manipulate canvas appropriately

• Extensions

• TESTING!

Nov 18, 2022 Sprenkle - CSCI209 10

10



11/27/22

6

What Classes are Dependent on Each Other?
•How tightly coupled are they?

Nov 18, 2022 Sprenkle - CSCI209 11

11

Dependencies
•Interpreter classes (tokens, analyzer, expression) 

are very dependent on each other
•Need to hook GUI to Interpreter
•Need to hook Image/Canvas to GUI and 

Interpreter
•Can test without other pieces but easier and 

more satisfying to see results displayed
Nov 18, 2022 Sprenkle - CSCI209 12

12



11/27/22

7

How is the floor function parsed?
•What classes are needed?
•How would you add another function to the 

language?
ØFor example, consider how you would add the cosine 

function

Nov 18, 2022 Sprenkle - CSCI209 13

(in given code)

13

How is the floor function parsed?
•Has a token to represent the floor function

ØSame prefix as function, e.g., FloorToken.java
Øfloor is listed in functions.conf

•FloorAnalyzer is the semantic analyzer for the 
function
ØNote has same prefix as function: FloorAnalyzer.java
ØAnalyzer class implements 
SemanticAnalyzerInterface, 
returns an instance of ExpressionTreeNode
• Specifically: Floor object

Nov 18, 2022 Sprenkle - CSCI209 14

(in given code)

Why is the naming important 
for the token and analyzer?

14



11/27/22

8

Process of Adding Cosine Function
to the Picasso Language
• Add Function name to functions.conf
• Create a token for the cosine function

ØSame prefix as new function, e.g., CosToken.java
• Create a semantic analyzer for the function with same 

prefix as function, e.g., CosAnalyzer.java
ØAnalyzer class implements 
SemanticAnalyzerInterface, 
returns an instance of ExpressionTreeNode

• Create a child of ExpressionTreeNode for function: 
Cosine.java

Nov 18, 2022 Sprenkle - CSCI209 15

(in given code)

Name/prefix must match for all but ETN

15

Process of Adding Cosine Function
to the Picasso Language
• Add Function name to functions.conf
• Create a token for the cosine function

ØSame prefix as new function, e.g., CosToken.java
• Create a semantic analyzer for the function with same 

prefix as function, e.g., CosAnalyzer.java
ØAnalyzer class implements 
SemanticAnalyzerInterface, 
returns an instance of ExpressionTreeNode

• Create a child of ExpressionTreeNode for function: 
Cosine.java

Nov 18, 2022 Sprenkle - CSCI209 16

(in given code)

Using Java reflection to 
map tokens to analyzers.
(How would we do this 

otherwise?)

16



11/27/22

9

Extensions
•Extensions could affect your code design
ØWhere could change à abstraction

•When does your team need to decide?
ØTechnically, not until the final implementation 

deadline
•But, see above

Nov 18, 2022 Sprenkle - CSCI209 17

17

Planning for Preliminary Implementation
• Goal is to have you do enough that you’ll see issues with an initial design 

you create and adjust
• Implementation requirement (see project description page for more)

Ø Input an expression interactively that includes at least one binary operator 
and display an image from the resulting expression

Ø Tag the version in Git
• Requirement involves a lot of different pieces

Ø Don’t go too far in breadth, more depth
• See design issues sooner

Ø “We need method/functionality X in class Y”
• Don’t stop if you have more time

Ø Keep going to find issues earlier

Nov 18, 2022 Sprenkle - CSCI209 18

18



11/27/22

10

Planning: Tasks/Steps
•Testing
•Think about iterative development
ØNot recommended: write all the 

tokens/parsers/expressions first
ØWhat is an appropriate process for this project?

•Decide on APIs where there are dependencies
ØParameters and what is returned

Nov 18, 2022 Sprenkle - CSCI209 19

19

Planning: Division of Tasks
•Work in subgroups?
•Consider how not to step on each other’s toes
ØReminder: Use git branches!

•Consider best # of people per part
ØLikely will keep changing as work gets done and you 

learn your design
•Not recommended: Person X does all the testing
ØPerhaps pair people up to write tests for each other

Nov 18, 2022 Sprenkle - CSCI209 20

20



11/27/22

11

Nov 18, 2022 Sprenkle - CSCI209 21

21

Teams Work Best When They are Interdependent

•In code terms, we want loose coupling
ØDepend on each other but don’t depend on their details

•Consider 
ØAre you allowing your team to truly be interdependent? 
ØWho might be you be ignoring?  
ØWho might be allowing themselves to feel inadequate?
ØHow do you show appreciation for each other and 

yourself?  
Nov 18, 2022 Sprenkle - CSCI209 22

22



11/27/22

12

Review: Collaboration
•What is our workflow in Git when collaborating?
•What did you like about how your team worked 

together on previous project?
ØWhat didn’t you like?

Nov 18, 2022 Sprenkle - CSCI209 23

23

Review: Collaboration: 
Workflow – Seeking Feedback
1. Create a branch from main for your work

ØCommit periodically
ØWrite descriptive comments so your team members know what you 

did and why
2. Push your branch
3. On GitHub, open a Pull Request on your branch

Ø Discuss and review potential changes – can still update
Ø You can tag your teammates to let them know that you’ve 

completed your work
4. Merge pull request into main branch
5. In Eclipse, pull main

Nov 18, 2022 Sprenkle - CSCI209 24

24



11/27/22

13

Collaboration Models
Good

• Team physically works all together or 
in subteams

• Division of labor is clear
Ø Keep track of tasks, what has been 

completed in a document
Ø Agree on team deadlines

• Good, frequent communication
Ø Be a sounding board for your teammate 

even if you don’t understand everything 
they are working on

Bad

• Multiple people are trying to do the 
same task
Ø Overwriting each other’s code

• Everyone is working in the main 
branch

• Make a plan as a team, then someone 
goes rogue

• Asking for help too late

Nov 18, 2022 Sprenkle - CSCI209 25

25

Student Questions
•Any code we shouldn’t change?
ØThere is likely code that you won’t change but 

depends on your extensions

•What if our design isn’t perfect?
ØIt won’t be
ØBUT try to get it to pretty good, especially before the 

intermediate deadline

Nov 18, 2022 Sprenkle - CSCI209 26

26



11/27/22

14

Implementation/Code Questions?

Nov 18, 2022 Sprenkle - CSCI209 27

27

Looking Ahead
•Friday after Thanksgiving, preliminary 

implementation deadline
ØDemo in class

Nov 18, 2022 Sprenkle - CSCI209 28

28


