
11/28/22

1

Objectives
•Picasso Discussion
ØBest development practices
ØSingleton Design Pattern
ØCode Smell

Nov 28, 2022 Sprenkle - CSCI209 1

1

Review
•What are the Picasso project components?
•What are the steps to add a new unary function into

the Picasso language in the current implementation?
ØHow much code needs to change to add the function?
ØHow would you write this code without using reflection?

•What can you do to help your team succeed?
•What is our work flow with Git?
•What is the spiral model of development?

Nov 28, 2022 Sprenkle - CSCI209 2

2

11/28/22

2

Review: Process of Adding Cosine Function
to the Picasso Language
• Add function name to functions.conf
• Create a token for the cosine function

ØSame prefix as new function, e.g., CosToken.java
• Create a semantic analyzer for the function with same

prefix as function, e.g., CosAnalyzer.java
ØAnalyzer class implements
SemanticAnalyzerInterface,
returns an instance of ExpressionTreeNode

• Create an ExpressionTreeNode for function:
Cosine.java

Nov 28, 2022 Sprenkle - CSCI209 3

(in given code)

Name/prefix must match for all but ETN

3

Review: Teams Work Best When They are
Interdependent
•In code terms, we want loose coupling

ØDepend on each other but don’t depend on their details

•Consider
ØAre you allowing your team to truly be interdependent?
ØWho might be you be ignoring?
ØWho might be allowing themselves to feel inadequate?
ØHow do you show appreciation for each other and

yourself?
Nov 28, 2022 Sprenkle - CSCI209 4

4

11/28/22

3

Review: Git WorkFlow
1. Create a new branch from main for your work

ØCommit periodically
ØWrite descriptive comments so your team members know what you

did and why
2. Push your branch
3. On GitHub, open a Pull Request on your branch

Ø Discuss and review potential changes – can still update
Ø You can tag your teammates to let them know that you’ve

completed your work
4. Merge pull request into main branch
5. In Eclipse, pull main

Nov 28, 2022 Sprenkle - CSCI209 5

5

Review: Spiral Development Model
• Idea: smaller prototypes to

test/fix/throw away
Ø Finding problems early costs less

• In general…
Ø Break functionality into smaller

pieces
Ø Implement most depended-on or

highest-priority features first

Nov 28, 2022 Sprenkle - CSCI209 6

Design

ImplementEvaluate

Prototypes

Radial dimension: cost[Boehm 86]

6

11/28/22

4

What Kind of Prototypes for Deliverables?
•Both for given code and for preliminary

implementation
•High fidelity with respect to the GUI
•Vertical prototype/Depth
ØFrom GUI à Backend à GUI
ØBut limited implementation of GUI features and

Picasso language

Nov 28, 2022 Sprenkle - CSCI209 7

7

SINGLETON DESIGN PATTERN

Nov 28, 2022 Sprenkle - CSCI209 8

8

11/28/22

5

Problem: Too Many Objects!
•Sometimes, we only want one object to ever be

created for a class
ØOften because there is some state that needs to be

coordinated across the application

Nov 28, 2022 Sprenkle - CSCI209 9

9

Solution: Singleton Design Pattern
•Make the constructor private
•Make a public method for accessing the one and

only instance

Nov 28, 2022 Sprenkle - CSCI209 10

10

11/28/22

6

Solution: Singleton Design Pattern
• Make the constructor private
• Make a public method for accessing the one and only instance

(a static variable)

Nov 28, 2022 Sprenkle - CSCI209 11

public class SemanticAnalyzer implements SemanticAnalyzerInterface {

private static SemanticAnalyzer ourInstance;

public static SemanticAnalyzer getInstance() {
if (ourInstance == null) {

ourInstance = new SemanticAnalyzer();
}
return ourInstance;

}

private SemanticAnalyzer() {
…

}

public ExpressionTreeNode generateExpressionTree(Stack<Token> tokens)

Private constructor

Access to object

11

When Does Picasso Use the
Singleton Design Pattern?
•Specialized analyzers need to refer to the
SemanticAnalyzer to parse its parameters/
operators

•Need to call methods on that one-and-only
object

Nov 28, 2022 Sprenkle - CSCI209 12

return new Floor(
SemanticAnalyzer.getInstance().

generateExpressionTree(tokens));

12

11/28/22

7

In Picasso:
Is the Singleton Design Pattern the Best Design?
•Is this the best design? <shrug/>
•Alternative 1: pass in the SemanticAnalyzer as

another parameter:

•Alterative 2: make SemanticAnalyzer’s
methods be static
ØRequires making state static too

Nov 28, 2022 Sprenkle - CSCI209 13

public ExpressionTreeNode
generateExpressionTree(Stack<Token> tokens,

SemanticAnalyzer semAnalyzer);

None of these changes are required; just explaining alternatives

13

Code Smell: Using instanceof

Nov 28, 2022 Sprenkle - CSCI209 14

public void drawShape(Shape shape) {
if (shape instanceof Square) {

drawSquare(shape);
}
else if(shape instanceof Circle) {

drawCircle(shape);
}

}

•Why isn’t this good code?
ØAlways consider: how is this code likely to change?

•How could we write this in a better way?

14

11/28/22

8

Code Smell: Using instanceof
•Previous example: had to know all of the Shape

classes
ØUpdate whenever a Shape is added or removed

•Better code: Polymorphic!
ØThere was a draw method specific to each Shape
ØRefactor those methods into Shape child classes

Nov 28, 2022 Sprenkle - CSCI209 15

public void drawShape(Shape shape) {
shape.draw();

}

15

Picasso Code:
ReferenceForExpressionEvaluations

Nov 28, 2022 Sprenkle - CSCI209 16

…
PLUS {

public RGBColor evaluate(RGBColor left, RGBColor right) {
double red = left.getRed() + right.getRed();
double green = left.getGreen() + right.getGreen();
double blue = left.getBlue() + right.getBlue();
return new RGBColor(red, green, blue);

}
},
…

What are left and right referring to?

This implementation (from the “old” version of the code) is different from
what we will have in our code. But, it is a helpful reference.

16

11/28/22

9

x/y is not the same as y/x

Nov 28, 2022 Sprenkle - CSCI209 17

x/y y/x

A common implementation mistake is the user enters x/y,
but Picasso displays y/x.

Error may also be in x+y, but operation (addition) is commutative.

17

x/y is not the same as y/x

Nov 28, 2022 Sprenkle - CSCI209 18

Consider points, holding y steady at -.5
x/y y/x

Y X .3 .45 .55 .7

Y = -.5

Color:

Y X .3 .45 .55 .7

Y = -.5

Color:

(placement of points is not exact in illustration)

18

11/28/22

10

x/y is not the same as y/x

Nov 28, 2022 Sprenkle - CSCI209 19

Consider points, holding y steady at -.5
x/y y/x

Y X .3 .45 .55 .7

Y = -.5 -.6 -.9 -1.1 -1.4

Color: Mid-gray Dark
gray

Black Black

Y X .3 .45 .55 .7

Y = -.5 -1.67 -1.11 -.91 -.71

Color: Black Black Dark
gray

Mid dark
gray

(placement of points is not exact in illustration)

Good tests
for the

Evaluator
test class

19

Team Collaboration/Planning
•An hour of thinking/design will save hours of coding
•Given code is not perfect code

Ø(Most code is not perfect code)
ØYou can change code but make sure you understand it first

•Design GUI on paper/white board first before trying
to implement

•You can write some tests first!
ØHelps to frame your implementation

Nov 28, 2022 Sprenkle - CSCI209 20

20

11/28/22

11

Preliminary Implementation
•Goals
ØGet your team working together
ØFind kinks in design
•Rework now instead of later

•Tag your version
•Can keep working after that
ØReturn to the tagged version for Friday’s demo

Nov 28, 2022 Sprenkle - CSCI209 21

21

Friday Demos: Preliminary Implementation
• Demo to me (only) in teams in Parmly 404
• Choose one person to demo the code
• Demo content:

ØShow what you have done for the preliminary implementation
ØDiscuss design decisions
ØTell me what you’re thinking for extensions

• Order of teams will be randomly generated on Friday
ØSchedule: 8:40, 8:52, 9:05
ØSchedule: 1:32, 1:43, 1:54, 2:05, 2:16

Nov 28, 2022 Sprenkle - CSCI209 22

22

11/28/22

12

Looking Ahead
•Friday: Preliminary Deadline and Demos
•Order of teams will be randomly generated on

Friday
ØSchedule: 8:40, 8:52, 9:05
ØSchedule: 1:32, 1:43, 1:54, 2:05, 2:16

•Need to cancel tomorrow’s office hours
ØEmail with questions/appointments

Nov 28, 2022 Sprenkle - CSCI209 23

23

