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Objectives
•Decorator design pattern
•Testing and Coverage
•Eclipse
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Review
• What is the singleton design pattern?

ØWhen is it useful?
ØHow is it implemented?

• What is the instanceof code smell?  Why is it a smell?
ØWhat is the solution?

• What is the process for evaluating an expression?
ØConsider floor(y) and floor( floor(y) )

• Resulting image will not be different
ØName the components, methods called

• Template: A calls B’s c method, passing in d and e; the method returns f
ØMap back to what these components represent, as appropriate
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Review: Singleton Design Pattern
•Goal: Only one object of a class
•How to achieve
ØMake the constructor private
ØMake a public method for accessing the one and only 

instance
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Review: instanceof Code Smell
•Problem:
ØCode specific to each possible type à Hard to update 

as add new types

•Solution: Refactor!  (as usual)
ØSpecifically: make a method for that functionality in 

the classes
ØLet dynamic dispatch call the appropriate method.
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Picasso Notes
•Given code base is not perfect but pretty good
•Example imperfections

ØMissing comments/Javadocs
ØIncorrect comments
ØLess-than-ideal naming
ØCharToken takes an int (rather than a char) as a 

parameter? 
•Project goal: you’re gaining experience

ØYou’ll work with imperfect code bases in the future
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Picasso: Your Team’s Javadocs
•Automatically generated from main branch at 

3:58 a.m. every day
•Linked from Documentation section of Picasso 

project page
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Reload the page to see changes/updates
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FAQ for Picasso
•Linked from the specification page
•Updated as I get new questions
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Reload the page to see changes/updates
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Preliminary Implementation
•Goals

ØGet your team working together, familiar/comfortable 
with pull requests
• No one left out, no one dominating

ØFind kinks in design
• Rework now instead of later

•Tag your version
•Can keep working after that

ØReturn to the tagged version for Friday’s demo
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Ungraded Objectives
• Think about what you need to complete for the final 

implementation.  
• With your current design, how well does your design 

extend for the next steps?
ØNext steps include the other/different types of 

expressions/functions, extensions
ØWhat could be designed better (i.e., make it easier to add these 

other parts)?
• An hour of thinking about the design and changing the 

code to improve the design will be worth hours of time 
later.
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DECORATOR DESIGN PATTERN
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What’s Your Drink?
•You go into a coffee shop: what is your drink?

•How can we represent the various beverages in 
code?

•What are the possible implementation issues?
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What’s Your Coffee Drink?
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Beverage
description
milk
soy
flavoring
whippedcream
getDescription()
cost()
hasMilk()
setMilk()
…

How many additional methods 
will we need to add to create a 
comprehensive beverage object?

How will we compute cost?

What happens when a new 
beverage feature is added?
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One Solution: Decorator
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Beverage
getDescription()
cost()

HouseBlend

cost()

Espresso

cost()

CondimentDecorator
getDescription()
cost()

Mocha

getDescription()
cost()

Soy

getDescription()
cost()

UML Diagram
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Latte’s Implementation
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public class Latte extends Beverage {

private double cost;

public Latte() {
this.cost = 3.75;

}

public String getDescription() {
return "Latte";

}

public double cost() {
return this.cost;

}
}

One possibility
(could keep state differently)
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Mocha’s Implementation
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public class Mocha extends CondimentDecorator {

private Beverage beverage;

public Mocha(Beverage beverage) {
this.beverage = beverage;

}

public String getDescription() {
return beverage.getDescription() + ", Mocha";

}

public double cost() {
return .20 + beverage.cost();

}
} What design patterns are used within this class?

How would we use this class?
How would we create other beverages?
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Using Beverages
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public class CoffeeGeneral {

public static void main(String[] args) {
Beverage b = new DarkRoast();
System.out.println(b.getDescription() + " $" + b.getCost());

Beverage b2 = new DarkRoast();
b2 = new Mocha(b2);
b2 = new Mocha(b2);
b2 = new Whip(b2);
System.out.println(b2.getDescription() + " $" + b2.getCost());

}
}
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Mocha’s Implementation
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public class Mocha extends CondimentDecorator {

private Beverage beverage;

public Mocha(Beverage beverage) {
this.beverage = beverage;

}

public String getDescription() {
return beverage.getDescription() + ", Mocha";

}

public double cost() {
return .20 + beverage.cost();

}
} Generalize: when to use the Decorator pattern,

tradeoffs of this design pattern?

Handles part it knows about,
Delegates rest to Beverage;

Example of OCP
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Design Pattern: Decorator
• Adds behavior to an object dynamically

ØTypically added by doing computation before or after an 
existing method in the object

• Benefits:
ØAlternative to inheritance
ØCan add any number of decorators
ØEach class is responsible for just one thing

• Possible drawback:
ØCould add many small classes à less than straightforward for 

others to understand
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Have we seen decorators used in practice?
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Represent Thanksgiving?
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dinner = new Turkey( new Duck( new Chicken() ) );
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Not-always-culturally-relevant: Christmas Tree
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TESTING PICASSO
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Testing Picasso
• Automated: JUnit tests

ØLow-cost tests (easy to make, fast to check)
ØTest individual pieces of interpreter
ØWon’t catch everything, but catch enough for a low cost

•ParserTestDriver
ØNot automated, BUT … 
ØDisplays the expression tree (using toString) that will be generated 

from a String expression
• GUI/Displayed images

Øhttps://cs.wlu.edu/~sprenkles/cs209/projects/picasso/intrinsics/
ØVisual check – big picture check; low precision
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How good is your testing?
•Use EclEmma, a plugin for Eclipse that comes 

with the Enterprise Edition we’re using
•What can you cover using unit tests?  With other 

testing?
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ECLIPSE DEBUGGER
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Eclipse Debugger
1.Set breakpoint
ØNear and BEFORE point of failure

2.Run program in debug mode
Ø Program pauses when it hits a breakpoint

3.Inspect variables
4.Step through program, inspecting variables
Ø Step into, over, and return
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Commands
• Step Into

ØExecutes the current line
ØIf the current line is a method call, the debugger steps into the 

method’s code
• Step Over

ØExecutes a method without stepping into it in the debugger
• Step Return

ØSteps out to the caller of the currently executing method
ØFinishes the execution of the current method and returns to 

the caller of this method
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Looking Ahead
•Friday: Preliminary Deadline and Demos
•Order of teams will be randomly generated on 

Friday
ØSchedule: 8:40, 8:52, 9:05
ØSchedule: 1:32, 1:43, 1:54, 2:05, 2:16 

•Next steps:
ØHow will you add reading expressions from a file?
ØHow will you add other components?
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Secondary Project Goals
•You’re going to figure out that your final design 

isn’t perfect—maybe not even good!
•Fix smaller and/or more critical things
ØRefactoring!

•Note larger things
ØAnalysis/post-mortem due at end of finals week
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Good judgment comes from experience. 
How do you get experience? 

Bad judgment works every time.
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