
11/30/22

1

Objectives
•Decorator design pattern
•Testing and Coverage
•Eclipse

Nov 30, 2022 Sprenkle - CSCI209 1

1

Review
• What is the singleton design pattern?

ØWhen is it useful?
ØHow is it implemented?

• What is the instanceof code smell? Why is it a smell?
ØWhat is the solution?

• What is the process for evaluating an expression?
ØConsider floor(y) and floor(floor(y))

• Resulting image will not be different
ØName the components, methods called

• Template: A calls B’s c method, passing in d and e; the method returns f
ØMap back to what these components represent, as appropriate

Nov 30, 2022 Sprenkle - CSCI209 2

2

11/30/22

2

Review: Singleton Design Pattern
•Goal: Only one object of a class
•How to achieve
ØMake the constructor private
ØMake a public method for accessing the one and only

instance

Nov 30, 2022 Sprenkle - CSCI209 3

3

Review: instanceof Code Smell
•Problem:
ØCode specific to each possible type à Hard to update

as add new types

•Solution: Refactor! (as usual)
ØSpecifically: make a method for that functionality in

the classes
ØLet dynamic dispatch call the appropriate method.

Nov 30, 2022 Sprenkle - CSCI209 4

4

11/30/22

3

Picasso Notes
•Given code base is not perfect but pretty good
•Example imperfections

ØMissing comments/Javadocs
ØIncorrect comments
ØLess-than-ideal naming
ØCharToken takes an int (rather than a char) as a

parameter?
•Project goal: you’re gaining experience

ØYou’ll work with imperfect code bases in the future

Nov 30, 2022 Sprenkle - CSCI209 5

5

Picasso: Your Team’s Javadocs
•Automatically generated from main branch at

3:58 a.m. every day
•Linked from Documentation section of Picasso

project page

Nov 30, 2022 Sprenkle - CSCI209 6

Reload the page to see changes/updates

6

11/30/22

4

FAQ for Picasso
•Linked from the specification page
•Updated as I get new questions

Nov 30, 2022 Sprenkle - CSCI209 7

Reload the page to see changes/updates

7

Preliminary Implementation
•Goals

ØGet your team working together, familiar/comfortable
with pull requests
• No one left out, no one dominating

ØFind kinks in design
• Rework now instead of later

•Tag your version
•Can keep working after that

ØReturn to the tagged version for Friday’s demo
Nov 30, 2022 Sprenkle - CSCI209 8

8

11/30/22

5

Ungraded Objectives
• Think about what you need to complete for the final

implementation.
• With your current design, how well does your design

extend for the next steps?
ØNext steps include the other/different types of

expressions/functions, extensions
ØWhat could be designed better (i.e., make it easier to add these

other parts)?
• An hour of thinking about the design and changing the

code to improve the design will be worth hours of time
later.

Nov 30, 2022 Sprenkle - CSCI209 9

9

DECORATOR DESIGN PATTERN

Nov 30, 2022 Sprenkle - CSCI209 10

10

11/30/22

6

What’s Your Drink?
•You go into a coffee shop: what is your drink?

•How can we represent the various beverages in
code?

•What are the possible implementation issues?

Nov 30, 2022 Sprenkle - CSCI209 11

11

What’s Your Coffee Drink?

Nov 30, 2022 Sprenkle - CSCI209 12

Beverage
description
milk
soy
flavoring
whippedcream
getDescription()
cost()
hasMilk()
setMilk()
…

How many additional methods
will we need to add to create a
comprehensive beverage object?

How will we compute cost?

What happens when a new
beverage feature is added?

12

11/30/22

7

One Solution: Decorator

Nov 30, 2022 Sprenkle - CSCI209 13

Beverage
getDescription()
cost()

HouseBlend

cost()

Espresso

cost()

CondimentDecorator
getDescription()
cost()

Mocha

getDescription()
cost()

Soy

getDescription()
cost()

UML Diagram

13

Latte’s Implementation

Nov 30, 2022 Sprenkle - CSCI209 14

public class Latte extends Beverage {

private double cost;

public Latte() {
this.cost = 3.75;

}

public String getDescription() {
return "Latte";

}

public double cost() {
return this.cost;

}
}

One possibility
(could keep state differently)

14

11/30/22

8

Mocha’s Implementation

Nov 30, 2022 Sprenkle - CSCI209 15

public class Mocha extends CondimentDecorator {

private Beverage beverage;

public Mocha(Beverage beverage) {
this.beverage = beverage;

}

public String getDescription() {
return beverage.getDescription() + ", Mocha";

}

public double cost() {
return .20 + beverage.cost();

}
} What design patterns are used within this class?

How would we use this class?
How would we create other beverages?

15

Using Beverages

Nov 30, 2022 Sprenkle - CSCI209 16

public class CoffeeGeneral {

public static void main(String[] args) {
Beverage b = new DarkRoast();
System.out.println(b.getDescription() + " $" + b.getCost());

Beverage b2 = new DarkRoast();
b2 = new Mocha(b2);
b2 = new Mocha(b2);
b2 = new Whip(b2);
System.out.println(b2.getDescription() + " $" + b2.getCost());

}
}

16

11/30/22

9

Mocha’s Implementation

Nov 30, 2022 Sprenkle - CSCI209 17

public class Mocha extends CondimentDecorator {

private Beverage beverage;

public Mocha(Beverage beverage) {
this.beverage = beverage;

}

public String getDescription() {
return beverage.getDescription() + ", Mocha";

}

public double cost() {
return .20 + beverage.cost();

}
} Generalize: when to use the Decorator pattern,

tradeoffs of this design pattern?

Handles part it knows about,
Delegates rest to Beverage;

Example of OCP

17

Design Pattern: Decorator
• Adds behavior to an object dynamically

ØTypically added by doing computation before or after an
existing method in the object

• Benefits:
ØAlternative to inheritance
ØCan add any number of decorators
ØEach class is responsible for just one thing

• Possible drawback:
ØCould add many small classes à less than straightforward for

others to understand

Nov 30, 2022 Sprenkle - CSCI209 18
Have we seen decorators used in practice?

18

11/30/22

10

Represent Thanksgiving?

Nov 30, 2022 Sprenkle - CSCI209 19

dinner = new Turkey(new Duck(new Chicken()));

19

Not-always-culturally-relevant: Christmas Tree

Nov 30, 2022 Sprenkle - CSCI209 20

20

11/30/22

11

TESTING PICASSO

Nov 30, 2022 Sprenkle - CSCI209 23

23

Testing Picasso
• Automated: JUnit tests

ØLow-cost tests (easy to make, fast to check)
ØTest individual pieces of interpreter
ØWon’t catch everything, but catch enough for a low cost

•ParserTestDriver
ØNot automated, BUT …
ØDisplays the expression tree (using toString) that will be generated

from a String expression
• GUI/Displayed images

Øhttps://cs.wlu.edu/~sprenkles/cs209/projects/picasso/intrinsics/
ØVisual check – big picture check; low precision

Nov 30, 2022 Sprenkle - CSCI209 24

24

11/30/22

12

How good is your testing?
•Use EclEmma, a plugin for Eclipse that comes

with the Enterprise Edition we’re using
•What can you cover using unit tests? With other

testing?

Nov 30, 2022 Sprenkle - CSCI209 25

25

ECLIPSE DEBUGGER

Nov 30, 2022 Sprenkle - CSCI209 26

26

11/30/22

13

Eclipse Debugger
1.Set breakpoint
ØNear and BEFORE point of failure

2.Run program in debug mode
Ø Program pauses when it hits a breakpoint

3.Inspect variables
4.Step through program, inspecting variables
Ø Step into, over, and return

Nov 30, 2022 Sprenkle - CSCI209 27

27

Commands
• Step Into

ØExecutes the current line
ØIf the current line is a method call, the debugger steps into the

method’s code
• Step Over

ØExecutes a method without stepping into it in the debugger
• Step Return

ØSteps out to the caller of the currently executing method
ØFinishes the execution of the current method and returns to

the caller of this method

Nov 30, 2022 Sprenkle - CSCI209 28

28

11/30/22

14

Looking Ahead
•Friday: Preliminary Deadline and Demos
•Order of teams will be randomly generated on

Friday
ØSchedule: 8:40, 8:52, 9:05
ØSchedule: 1:32, 1:43, 1:54, 2:05, 2:16

•Next steps:
ØHow will you add reading expressions from a file?
ØHow will you add other components?

Nov 30, 2022 Sprenkle - CSCI209 29

29

Secondary Project Goals
•You’re going to figure out that your final design

isn’t perfect—maybe not even good!
•Fix smaller and/or more critical things
ØRefactoring!

•Note larger things
ØAnalysis/post-mortem due at end of finals week

Nov 30, 2022 Sprenkle - CSCI209 30

Good judgment comes from experience.
How do you get experience?

Bad judgment works every time.

30

