
10/27/22

1

Objectives
•Testing Overview
•Unit Testing
•JUnit

Sprenkle - CSCI209 1

1

Review: Software Testing Process

•Test case: both the input and
the expected output

•Test Suite: set of test cases
Sprenkle - CSCI209 2

Input Program Actual
Output

Test Case

Program
Under Test

Expected
Output ?

pass or fail

2

10/27/22

2

Review: Software Testing Process

•Results of test cases’
passing/failing are used
in the subsequent step: debugging

Sprenkle - CSCI209 3

Input Program Actual
Output

Test Case

Program
Under Test

Expected
Output ?

pass or fail

3

How Would You Test a Calculator Program?

What test cases?
Provide both input and expected output

Sprenkle - CSCI209 4

Numerical
Answer

adds, subtracts,
multiplies, divides

Operands,
operators,
expected

output

Input Calculator
Program Output

4

10/27/22

3

Example Calculator Test Cases

Sprenkle - CSCI209 5

Numerical
Answer

adds, subtracts,
multiplies, divides

Operands,
operators,
expected

output

Input Calculator
Program Output

Operation Input Expected Output
Add 1, 1 2
Add 1, -1 0
Add 1.5, 0 1.5
…

5

Software Testing Questions
•How should you test? How often?

ØCode may change frequently
ØCode may depend on others’ code
ØA lot of code to validate

•How do you know that an output is correct?
ØComplex output
ØHuman judgment?

•What caused a code failure?
Sprenkle - CSCI209 6

➥ Need a systematic, automated,
repeatable approach

6

10/27/22

4

Levels of Testing
• Unit

Ø Tests minimal software component, in isolation
Ø For us, Class-level testing
Ø Web: Web pages (Http Request)

• Integration
Ø Tests interfaces & interaction of classes

• System
Ø Tests that completely integrated system meets

requirements
• System Integration

Ø Test system works with other systems, e.g., third-
party systems

Sprenkle - CSCI209 7

Cost increases

7

UNIT TESTING

Sprenkle - CSCI209 8

8

10/27/22

5

Unit Testing
•Tests minimal software component, in isolation
•For us, Class-level testing
•Web: Web pages (Http Request)

Sprenkle - CSCI209 9

9

Why Unit Test?
•Verify code works as intended in isolation
•Find defects early in development

ØEasier to test small pieces
ØLess cost than at later stages (e.g., when integrating)

•Suite of (small) test cases to run after code changes
ØAs application evolves, new code is more likely to break

existing code
ØAlso called regression testing

Sprenkle - CSCI209 10

10

10/27/22

6

Some Approaches to Testing Methods
•Typical case

ØTest typical values of input/parameters
•Boundary conditions

ØTest at boundaries of input/parameters
ØMany faults live “in corners”

•Parameter validation
ØVerify that parameter and object bounds are documented

and checked
ØExample: pre-condition that parameter isn’t null

Sprenkle - CSCI209 11
➥ All black-box testing approaches

11

Another Use of Unit Testing:
Test-Driven Development (TDD)

•A development style, evolved from Extreme
Programming

•Idea: write tests first without code bias
•The Process:

1. Write tests that code/new functionality should pass
• Like a specification for the code (pre/post conditions)
• All tests will initially fail

2. Write the code and verify that it passes test cases
• Know you’re done coding when you pass all tests

Sprenkle - CSCI209 12What assumption does this make?

How do you know you’re “done”
in traditional development?

12

10/27/22

7

Characteristics of Good Unit Testing
•Automatic
•Thorough
•Repeatable
•Independent

Sprenkle - CSCI209 13

STOP: Why are these characteristics of
good (unit) testing?

13

Characteristics of Good Unit Testing
• Automatic

Ø Since unit testing is done frequently, don’t want humans slowing the
process down

Ø Automate executing test cases and evaluating results
Ø Input: in test itself or from a file

• Thorough
Ø Covers all code/functionality/cases

• Repeatable
Ø Reproduce results (correct, failures)

• Independent
Ø Test cases are independent from each other
Ø Easier to trace fault to code

Sprenkle - CSCI209 14

14

10/27/22

8

JUNIT

Sprenkle - CSCI209 15

15

JUnit Framework
• A framework for unit testing Java programs

ØSupported by Eclipse and other IDEs
ØOriginally developed by Erich Gamma and Kent Beck

• Functionality
ØWrite tests

• Validate output, automatically
ØAutomate execution of test suites
ØDisplay pass/fail results of test execution

• Stack trace where fails
ØOrganize tests, separate from code

• But, you still need to come up with the tests!

Sprenkle - CSCI209 16

Kent Beck

Erich Gamma

16

10/27/22

9

Testing with JUnit
•Typical organization:

ØSet of testing classes
ØTesting classes packaged together in a tests package

• Separate package from code testing

•A test class typically
ØFocuses on a specific class
ØContains methods, each of which represents another test

of the class
Sprenkle - CSCI209 17

tests
CDTest
DVDTest
MediaItemTest

17

Structure of a JUnit Test
1.Set up the test case (optional)
Ø Example: Creating objects

2.Exercise the code under test
3.Verify the correctness of the results
4.Teardown (optional)
Ø Example: reclaim created objects

Sprenkle - CSCI209 18

18

10/27/22

10

Annotations
• Testing in JUnit 5: uses annotations
• Provide information about a program that is not part of

program itself
• Have no direct effect on operation of the code

ØBut compiler or tools may use them
• Example uses of annotations:

Ø@Override: method declaration is intended to override a method
declaration in parent class
• If method does not override parent class method, compiler generates error

message
Ø Information for the compiler to suppress warnings

(@SupressWarnings)
Sprenkle - CSCI209 19

19

Creating Tests
•Tests are contained in classes
•The class is named for the functionality you’re

testing
•Typically located in a separate package named
tests

Sprenkle - CSCI209 20

package edu.wlu.cs.calculator.tests;

public class CalculatorTest {

}

This class contains tests for the calculator

20

10/27/22

11

Methods are Test Cases
• Mark your testing method with @Test

ØFrom org.junit.jupiter.api.Test

• Convention: Method name describes what you’re testing
Sprenkle - CSCI209 21

public class CalculatorTest {

@Test
public void testAdd() {

…
}

}

A method to test the
“add” functionality

Class for testing the
Calculator class

21

Assert Methods
• Used to verify that execution results are what you expect
• Variety of assert methods available
• If fail, throw an error
• Otherwise, test keeps executing
• All static void
• Example: assertEquals(Object expected, Object actual)

Sprenkle - CSCI209 22

@Test
public void testAdd() {

…
assertEquals(4, calculator.add(3, 1));

}

Defined in
org.junit.jupiter.api.Assertions

22

10/27/22

12

Assert Methods
•To use asserts, need static import:

Østatic allows us to not have to use classname when
calling method

•More examples
Ø assertTrue(boolean condition)
Ø assertSame(Object expected, Object actual)

• Refer to same object
Ø assertEquals(double expected, double actual, double delta)

• Doubles are equal within a delta

Sprenkle - CSCI209 23

import static org.junit.Assert.*;

23

Example Uses of Assert Methods

Sprenkle - CSCI209 24

@Test
public void testEmptyCollection() {

Collection collection = new ArrayList();
assertTrue(collection.isEmpty());

}

@Test
public void testPI() {

final double ERROR_TOLERANCE = .01;
assertEquals(Math.PI, 3.14, ERROR_TOLERANCE);

}

Test will fail if ERROR_TOLERANCE = .001

assertEquals(double expected, double actual, double delta)

24

10/27/22

13

Set Up/Tear Down
•May want methods to set up objects for every

test in the class
ØCalled fixtures
ØIf have multiple, no guarantees for order executed

Sprenkle - CSCI209 25

@BeforeEach
public void prepareTestData() { ... }

@BeforeEach
public void setupMocks() { ... }

@AfterEach
public void cleanupTestData() { ... }

Executed before
each test method

25

Example Set Up Method

Sprenkle - CSCI209 26

@BeforeEach Executed before each test method
• Can use testCD object in test methods
• Helps make test methods independent
• Changes to instance variable in one test

method don’t affect the other test methods

private CD testCD;

@BeforeEach
public void setUp() {

testCD = new CD("CD title", "CD Artist",
100, 1997, 11);

}

Declare the instance variable

26

10/27/22

14

Example: Testing the CD class

Sprenkle - CSCI209 27

private CD testCD;

@BeforeEach
public void setUp() {

testCD = new CD("CD title", "CD Artist",
100, 1997, 11);

}

@Test
public void testDefaultConstructor() {

// can use testCD in here
assertEquals(11, testCD.getNumTracks());
assertEquals(1997, testCD.getCopyrightYear());
assertTrue(testCD.isInCollection());
…

}

2. Instantiate the instance variable before every test

3. Use the instance variable in your test methods

1. Declare the instance variable

27

Example: Testing the CD class

Sprenkle - CSCI209 28

private CD testCD;

@BeforeEach
public void setUp() {

testCD = new CD("CD title", "CD Artist",
100, 1997, 11, false);

}

@Test
public void testInCollection() {

assertFalse(testCD.isInCollection());
testCD.setInCollection();
assertTrue(testCD.isInCollection());

}
Exercising the code and verifying its correctness

28

10/27/22

15

Expecting an Exception
•Sometimes an exception is the expected result

Sprenkle - CSCI209 29

@Test
public void testIndexOutOfBoundsException() {

List emptyList = new ArrayList();

assertThrows(IndexOutOfBoundsException.class,
() -> { Object o = emptyList.get(0); }

);
}

Test case passes only if exception is thrown

29

Expecting an Exception: Breaking It Down

Sprenkle - CSCI209 30

@Test
public void testIndexOutOfBoundsException() {

List emptyList = new ArrayList();

assertThrows(IndexOutOfBoundsException.class,
() -> { Object o = emptyList.get(0); }

);

}

assertThrows(Class<T> expectedType, Executable executable)

How to read assertThrows:
Execute the executable (after the first ,)
and check if it throws an exception of that type (before the ,)

Example of a
Lambda expression

30

https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html?is-external=true
https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/function/Executable.html

10/27/22

16

Expecting an Exception: Breaking It Down (2)

Sprenkle - CSCI209 31

@Test
public void testIndexOutOfBoundsException() {

List emptyList = new ArrayList();

assertThrows(IndexOutOfBoundsException.class,
() -> { Object o = emptyList.get(0); }

);

}

assertThrows(Class<T> expectedType, Executable executable)

How to read assertThrows:
Execute the highlighted code (in {})
and check if it throws that exception type

A lot more can be said about lambda expressions… but not in CSCI209

31

Expecting an Exception
•Can also check characteristics of the thrown

exception

Sprenkle - CSCI209 32

@Test
public void testIndexOutOfBoundsException() {
List myList = new ArrayList();
IndexOutOfBoundsException ioobExc =

assertThrows(IndexOutOfBoundsException.class, () -> {
myList.get(0);

});
assertEquals("Index 0 out of bounds for length 0",

ioobExc.getMessage());
}

Test case passes only if exception is thrown
and message matches

32

https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html?is-external=true
https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/function/Executable.html

10/27/22

17

Expecting an Exception: Birthday

Sprenkle - CSCI209 33

class BirthdayTest {

private Birthday bday;

@BeforeEach
void setUp() throws Exception {

bday = new Birthday();
}

@Test
void testSetBirthday() {

IllegalArgumentException iaEx =
assertThrows(IllegalArgumentException.class, () -> {

bday.setBirthday(0, 1);
});
assertEquals("Month must be between 1 and 12, inclusive",

iaEx.getMessage());
}

}

33

Set Up/Tear Down For Test Class
•May want methods to set up objects for set of

tests
ØExecuted once before any test in class executes

Sprenkle - CSCI209 34

@BeforeAll
public static void
setupDatabaseConnection() { ... }

@AfterAll
public static void
teardownDatabaseConnection() { ... }

34

10/27/22

18

JUnit Examples
•Check out the examples of testing the Chicken

and Birthday classes

Sprenkle - CSCI209 35

https://cs.wlu.edu/~sprenkles/cs209/examples/
junit_testing/code.html

35

Writing Good Test Cases
• A test method should focus on one behavior

ØIf test case fails, the test case should be helpful in narrowing
down where the problem is

• Use assert statements well to verify the results are what
you expect
ØMay use multiple asserts to verify one result

• Testing isn’t typically “creative” and doesn’t need to be
generalizable
ØCode should be straightforward

• See examples linked from course schedule page

Sprenkle - CSCI209 36

36

10/27/22

19

Unit Testing & JUnit Summary
•Unit Testing: testing smallest component of your

code
ØFor us: class and its methods

•JUnit provides framework to write test cases and
run test cases automatically
ØEasy to run again after code changes

Sprenkle - CSCI209 37

37

JUNIT IN ECLIPSE

Sprenkle - CSCI209 38

38

10/27/22

20

Using JUnit in Eclipse
•Eclipse can help make our job easier
ØAutomatically execute tests (i.e., methods)
ØWe can focus on coming up with tests

Sprenkle - CSCI209 39

39

Using JUnit in Eclipse: Creating a New Test Class
• In Eclipse, go to your Assignment5 project
• Create a new JUnit Test Case (under Java)

ØSelect JUnit Jupiter test
• When prompted, add JUnit to build path

ØPut in package edu.wlu.cs.username.tests
ØName: DVDTest
ØChoose to test DVD class

• Select setUp and tearDown
• Select methods to test

• Run the class as a JUnit Test Case

Sprenkle - CSCI209 40

40

10/27/22

21

Using JUnit in Eclipse: Creating a New Test Class
• Alternatively…
• Right-click on the class you want to test (e.g., CD)
• Select New à JUnit Test Case

ØSelect JUnit Jupiter test
• When prompted, add JUnit to build path

ØPut in package edu.wlu.cs.username.tests
ØName: CDTest
ØCD should already be selected as “Class under test”

• Select setUp
• Select methods to test

• Run the test class as a JUnit Test Case

Sprenkle - CSCI209 41

41

Example
•Create a test method that tests the method that gets

the length of the DVD
ØRevise: Add code to setUp method that creates a DVD

and use that in your test

•Notes
ØReplaying all the test cases: right click on tests package
ØFastView vs Detached
ØHint: CTL-Spacebar to get auto-complete options

Sprenkle - CSCI209 42

42

10/27/22

22

Got It? Good!
•Take the quiz on Canvas!

Sprenkle - CSCI209 43

43

