
Objectives
•Wrap up exceptions
•Representing Files
•Streams
ØByte Streams
ØText Streams
ØConnected Streams

Oct 23, 2023 Sprenkle - CSCI209 1

A Few Words on Assignment 5
•May be the opposite of Assignment 4
•Not as much thinking, more practicing Eclipse

Oct 23, 2023 Sprenkle - CSCI209 2

Review
1. Why can Eclipse do all that it can do for Java? (as

opposed to what’s possible with a Python IDE)
2. Why did I wait until now to show you Eclipse?
3. If your code calls a method that can throw an exception,

how can you handle it?
Ø (Two options)

4. How do we make a block of code execute regardless of
whether some code threw an exception or not?

5. What are benefits of exceptions?
Oct 23, 2023 Sprenkle - CSCI209 3

Benefits of Exceptions
• Force error checking/handling

ØOtherwise, won’t compile
ØDoes not guarantee “good” exception handling

• Ease debugging
ØStack trace

• Separates error-handling code from “regular” code
ØError code is in catch blocks at end
ØDescriptive messages with exceptions

• Propagate methods up call stack
Ø Let whoever “cares” about error handle it

• Group and differentiate error types
Oct 23, 2023 Sprenkle - CSCI209 4

Exceptions Summary
•Exception handling should be exceptional

ØException handling is expensive
•Try to prevent Runtime Exceptions
•Throw Exceptions in your code for improved error

handling/robustness
•If your code calls a method that throws an exception

ØCatch the exception if you can handle it well OR
ØThrow the exception to whoever called you and let them

handle it

Oct 23, 2023 Sprenkle - CSCI209 5

FILES

Oct 23, 2023 Sprenkle - CSCI209 6

java.io.File Class
•Represents a file or directory
•Provides functionality such as
ØStorage of the file on the disk
ØDetermine if a particular file exists
ØWhen file was last modified
ØRename file
ØRemove/delete file
Ø…

Oct 23, 2023 Sprenkle - CSCI209 7

Making a File Object
•Simplest constructor takes full file name (including

path)
ØIf don’t supply path, Java assumes current directory (.)

ØCreates a File object representing a file named

“chicken.data” in the current directory
ØDoes not create a file with this name on disk

•Similar to Python:

Oct 23, 2023 Sprenkle - CSCI209 8

File myFile = new File("chicken.data");

myFile = open("chicken.data")

Files, Directories, and Useful Methods
•A File object can represent a file or a directory
ØDirectories are special files in most modern operating

systems

•Use isDirectory() and/or isFile() for type of
file File object represents

•Use exists() method
ØDetermines if a file exists on the disk

Oct 23, 2023 Sprenkle - CSCI209 9
In Python, functionality are in the os.path module

More File Constructors
•String for the path, String for filename

•File for directory, String for filename

Oct 23, 2023 Sprenkle - CSCI209 10

File myFile = new File("/csdept/courses/cs209/handouts",
"chicken.data");

File myDir = new File("/csdept/courses/cs209/handouts");
File myFile = new File(myDir, "chicken.data");

Does this “break” any of Java’s principles?

File Paths Break Java’s Portability Principle
• Principle of Portability

ØWrite and Compile Once, Run Anywhere
• Problem: file paths are OS-specific
•java.io.File.separator

ØOSX/Linux: /
ØWindows: \

• Takeaways:
ØUse relative paths
ØUse configuration files (text files, not Java files) to set paths

Oct 23, 2023 Sprenkle - CSCI209 11

java.io.File Class
•25+ methods
ØManipulate files and directories
ØCreating and removing directories
ØMaking, renaming, and deleting files
ØInformation about file (size, last modified)
ØCreating temporary files
Ø…

•See online API documentation
Oct 23, 2023 Sprenkle - CSCI209 12FileTest.java

STREAMS
A design case study

Oct 23, 2023 Sprenkle - CSCI209 13

Streams

Oct 23, 2023 Sprenkle - CSCI209 14

input stream: an object from which we can read a sequence of bytes
abstract class: java.io.InputStream

The image part with relationship ID rId3 was not found in the file.

Java handles input/output using streams,
which are sequences of bytes

Streams

Oct 23, 2023 Sprenkle - CSCI209 15

output stream: an object to which we can write a sequence of bytes
abstract class: java.io.OutputStream

Java handles input/output using streams,
which are sequences of bytes

Java Streams
•MANY (80+) types of Java streams
•In java.io package
•Why stream abstraction?

ØInformation stored in different sources is accessed in
essentially the same way
• Example sources: file, on a web server across the network, string

ØAllows same methods to read or write data, regardless
of its source
• Simply create an InputStream or OutputStream of the

appropriate type

Oct 23, 2023 Sprenkle - CSCI209 16

java.io Classes Overview

• Abstract base classes for binary
data (bytes)

• Abstract base classes for text data:

Oct 23, 2023 Sprenkle - CSCI209 17

InputStream OutputStream Reader Writer

Two categories of stream classes, based on datatype

Byte Streams: For Binary Data

Abstract Base Classes

Oct 23, 2023 Sprenkle - CSCI209 18

Shaded: Read from/write to source
White: Does some processing

In java.io package

Character Streams: For Text

Abstract Base Classes

Oct 23, 2023 Sprenkle - CSCI209 19

• In java.io package
• Handle any character in

Unicode set

Shaded: Read from/write to source
White: Does some processing

Console I/O: Streams!
•Output:

ØSystem.out and System.err are PrintStream
objects

•Input
ØSystem.in is an InputStream object
ØThrows exceptions if errors when reading

•Must handle in try/catch
•Reason we instead used Scanner to read data

Oct 23, 2023 Sprenkle - CSCI209 20

Opening & Closing Streams
•Streams are automatically opened when

constructed

•Close a stream by calling its close() method
ØClose a stream as soon as object is done with it
ØFree up system resources

Oct 23, 2023 Sprenkle - CSCI209 21

Reading & Writing Bytes
•Abstract parent class: InputStream

Øabstract int read()
• reads one byte from the stream and returns it

ØConcrete child classes override read() to provide
appropriate functionality
• e.g., FileInputStream’s read() reads one byte from a file

•Similarly, OutputStream class has abstract
write() to write a byte to the stream

Oct 23, 2023 Sprenkle - CSCI209 22

File Input and Output Streams
•FileInputStream: provides an input stream

that can read from a file
ØConstructor takes the name of the file:

ØOr, uses a File object …

Oct 23, 2023 Sprenkle - CSCI209 24

FileInputStream fin = new FileInputStream("chicken.data");

File inputFile = new File("chicken.data");
FileInputStream fin = new FileInputStream(inputFile);

FileTest.java

More Powerful Stream Objects
• DataInputStream

ØReads Java primitive types
through methods such as
readDouble(), readChar(),
readBoolean()

• DataOutputStream
ØWrites Java primitive types with
writeDouble(),
writeChar(),
writeBoolean(), …

Oct 23, 2023 Sprenkle - CSCI209 25

Connected Streams

•FileInputStream can read from a file but has no
methods to read numeric types

•DataInputStream can read numeric types but has
no methods to read from a file

•Java allows you to combine two types of streams
into a connected stream
ØFileInputStream à chocolate
ØDataInputStream à peanut butter

Oct 23, 2023 Sprenkle - CSCI209 26

Our goal: read numbers from a file

Connected Streams
• Think of a stream as a pipe
• FileInputStream knows how to read from a file
• DataInputStream knows how to read an InputStream into useful

types
• Connect out end of FileInputStream to in end of
DataInputStream…

Oct 23, 2023 Sprenkle - CSCI209 27

FileInputStream DataInputStream
double

char
file

Data Source stream
Filtered Stream

Reads from a stream

Connecting Streams
• If we want to read numbers from a file

ØFileInputStream reads bytes from file
ØDataInputStream handles numeric type reading

•Connect the DataInputStream to the
FileInputStream
ØFileInputStream gets the bytes from the file and
DataInputStream reads them as assembled types

Oct 23, 2023 Sprenkle - CSCI209 28

FileInputStream fin = new FileInputStream("chicken.data");
DataInputStream din = new DataInputStream(fin);

double num1 = din.readDouble();
“wrap” fin in din

DataIODemo.java

Data Source vs. Filtered Streams
Data Source Streams
• Communicate with a data source

Ø file, byte array, network socket, or
URL

Filtered Streams
• Subclasses of
FilterInputStream or
FilterOutputStream

• Always contains/connects to
another stream

• Adds functionality to other stream
Ø Automatically buffered IO
Ø Automatic compression
Ø Automatic encryption
Ø Automatic conversion between

objects and bytes

Oct 23, 2023 Sprenkle - CSCI209 29

Byte Streams: For Binary Data

Abstract Base Classes

Oct 23, 2023 Sprenkle - CSCI209 30

Shaded: Read from/write to source
White: Does some processing

In java.io package

Another Filtered Stream: Buffered Streams
•BufferedInputStream buffers your input

streams
ØA pipe in the chain that adds buffering à speeds up

access

Oct 23, 2023 Sprenkle - CSCI209 31

DataInputStream din = new DataInputStream (
 new BufferedInputStream (
 new FileInputStream("chicken.data")));

FileInputStream
double

char
file BufferedInputStream

Review: What functionality does each stream add?

DataInputStream

Connected Streams: Similar for Output
•Example: for buffered output to the file and to

write types
ØCreate a FileOutputStream
ØAttach a BufferedOutputStream
ØAttach a DataOutputStream
ØPerform typed writing using methods of the
DataOutputStream object

Oct 23, 2023 Sprenkle - CSCI209 32

Combine different types of streams
to get functionality you want

TEXT STREAMS

Oct 23, 2023 Sprenkle - CSCI209 33

Text Streams
•Streams so far: operate on binary data, not text
•Java uses Unicode to represent characters/strings

and some operating systems do not
ØNeed something that converts characters from

Unicode to whatever encoding the underlying
operating system uses

ØLuckily, this is mostly hidden from you

Oct 23, 2023 Sprenkle - CSCI209 34

Character Streams: For Text

Abstract Base Classes

Oct 23, 2023 Sprenkle - CSCI209 35

Shaded: Read from/write to source
White: Does some processing

• In java.io package
• Handle any character in

Unicode set

Text Streams
•Derived from Reader and Writer classes
ØReader and Writer generally refer to text I/O

•Example: Make an input reader of type
InputStreamReader that reads from keyboard

Øin reads characters from keyboard and converts
them into Unicode for Java

Oct 23, 2023 Sprenkle - CSCI209 36

InputStreamReader in = new InputStreamReader(System.in);

Convenience Classes: Common Combinations
•Reading and writing to text files is common
•FileReader
ØConvenience class combines a InputStreamReader

with a FileInputStream
•Similar for output to text file

 is equivalent to

Oct 23, 2023 Sprenkle - CSCI209 38

FileWriter out = new FileWriter("output.txt");

OutputStreamWriter out = new OutputStreamWriter(
 new FileOutputStream("output.txt"));

PrintWriter
•Easiest writer to use for writing text output
•Has methods for printing various data types
Øsimilar to a DataOutputStream, PrintStream

•Methods: print, printf and println
ØSimilar to System.out (a PrintStream) to display

strings

Oct 23, 2023 Sprenkle - CSCI209 39

PrintWriter Example

Oct 23, 2023 Sprenkle - CSCI209 40

PrintWriter out = new PrintWriter("output.txt");

String myName = "Homer Simpson";
double mySalary = 35700;

out.print(myName);
out.print(" makes ");
out.print(salary);
out.println(" per year.");
 or
out.println(myName + " makes " + salary +
 " per year.");

File to write to

Reading Text from a Stream: BufferedReader

•There is no PrintReader class
•Constructor requires a Reader object

•Read file, line-by-line using readLine()
ØReads in a line of text and returns it as a String
ØReturns null when no more input is available

Oct 23, 2023 Sprenkle - CSCI209 43

String line;
while ((line = in.readLine()) != null) {
 // process the line
}

BufferedReader in = new BufferedReader(new FileReader("myfile.txt"));

Reading Text from a Stream
•You can attach a BufferedReader to an
InputStreamReader:

•Used to be the best way to read from the console
Oct 23, 2023 Sprenkle - CSCI209 44

BufferedReader consoleReader= new BufferedReader(
 new InputStreamReader(System.in));
BufferedReader webpageReader = new BufferedReader(
 new InputStreamReader(url.openStream());

Note how easy it is to read from different sources

Scanners
•Scanners do not throw IOExceptions!

ØFor a simple console program, main() does not have to
deal with or throw IOExceptions

ØHandling those exceptions is required with
BufferedReader/InputStreamReader combination

•Throws InputMismatchException when token
doesn’t match pattern for expected type
Øe.g., nextLong() called with next token “AAA”
ØNo catching required

Oct 23, 2023 Sprenkle - CSCI209 45

Meaning it is what type of exception?
How do you prevent errors in Scanner?

Scanners
•Scanners do not throw IOExceptions!

ØFor a simple console program, main() does not have to
deal with or throw IOExceptions

ØHandling those exceptions is required with
BufferedReader/InputStreamReader combination

•Throws InputMismatchException when token
doesn’t match pattern for expected type
Øe.g., nextLong() called with next token “AAA”
ØRuntimeException (no catching required)

Oct 23, 2023 Sprenkle - CSCI209 46How do you prevent such errors?

Preventing Scanner Runtime Exceptions
•Methods to check before reading, e.g.
hasNextLong()

•Example code excerpt

Oct 23, 2023 Sprenkle - CSCI209 47

Scanner sc = new Scanner(System.in);
System.out.print("Enter a long: ");
while(! sc.hasNextLong()) {

System.out.println("Oops, that's not a long.");
sc.nextLine(); // read in what they (incorrectly) entered
System.out.print("Enter a long: ");

}
long myLong = sc.nextLong();
System.out.println("You entered " + myLong);
sc.close();

Summary: Streams
•Abstraction: streams – sequences of data
•Two categories of classes based on type of data they

handle
ØBytes: InputStream OutputStream
ØText: Reader Writer

•Two categories of classes based on their source
ØData Source (primary source)
ØFiltered (another stream)

Oct 23, 2023 Sprenkle - CSCI209 49

Summary: Using Streams
•Can combine streams to get the custom functionality

you want
ØConvenience classes for some common combinations

•Development decisions: What do I want this stream
to do?
ØWhat kind of data is it dealing with?
ØWhat filtering/functionality do I want?

•Select the streams that provide that functionality
and connect them (or use convenience class)

Oct 23, 2023 Sprenkle - CSCI209 50

Discussion: Stream Design Decisions
•Java’s Streams
ØCombine different types of streams to get

functionality you want
ØProvide convenience classes for common functionality

Oct 23, 2023 Sprenkle - CSCI209 51

What are the tradeoffs for this design decision?
• What would the alternatives be?
• Consider if you maintained the Java libraries
• Consider as a user of those Java libraries

Assignment 5
•Practicing with Eclipse
•Inheritance, Collections
•Due Monday

Oct 23, 2023 Sprenkle - CSCI209 52

