
Objectives
•Streams wrap up
•Java Wrap Up
ØGarbage Collection
ØCompiler optimizations
ØComparing with Python

Oct 25, 2023 Sprenkle - CSCI209 1

Review
1. What is a stream?
2. What are 3 different ways to categorize Java stream

classes?
3. What design decisions did Java make in creating streams

and what are the tradeoffs of those decisions?
Ø The design decision could mirror design decisions in other

instances/fields/domains. What is an analogy or example of
the same design decision?

4. What does the compiler do?
Ø How is compiling different from interpreting?

Oct 25, 2023 Sprenkle - CSCI209 2

Summary: Streams
•Abstraction: streams – sequences of data
•Two categories of classes based on type of data they

handle
ØBytes: InputStream OutputStream
ØText: Reader Writer

•Two categories of classes based on their source
ØData Source (primary source)
ØFiltered (another stream)

Oct 25, 2023 Sprenkle - CSCI209 3

Summary: Using Streams
•Can combine streams to get the custom functionality

you want
ØConvenience classes for some common combinations

•Development decisions: What do I want this stream
to do?
ØWhat kind of data is it dealing with?
ØWhat filtering/functionality do I want?

•Select the streams that provide that functionality
and connect them (or use convenience class)

Oct 25, 2023 Sprenkle - CSCI209 4

Discussion: Stream Design Decisions

Oct 25, 2023 Sprenkle - CSCI209 5

FileIS Buffered
IS

Compress
ionIS

Encrypted
IS

Current Design: Alternative Design:
Those classes + all the combinations

Buffered
FileIS

Compress
FileIS

Encrypted
FileIS

Encrypted
Compress
FileIS

Buffered
Encrypted
FileIS

Buffered
Encrypted
Compress
FileIS…

What happens when functionality changes?
New functionality added?

Discussion: Stream Design Decisions

•Alternative: Creating a class for every combination
would result in even more classes and a lot of
redundant code
ØConsider what is required if some functionality must be

updated
ØTricky for user to pull together various streams BUT also

would be hard to find the class you want that has the right
combination of functionality

Oct 25, 2023 Sprenkle - CSCI209 6

Combine different types of streams
to get functionality you want

What Happens in This Code?
Chicken x, y;
Chicken z = new Chicken("baby", 5, 1.0);
x = new Chicken("ed", 81, 10.3);
y = new Chicken("mo", 63, 6.2);
Chicken temp = x;
x = y;
y = temp;
z = x;

Oct 25, 2023 Sprenkle - CSCI209 8

What Happens in This Code?
Chicken x, y;
Chicken z = new Chicken("baby", 5, 1.0);
x = new Chicken("ed", 81, 10.3);
y = new Chicken("mo", 63, 6.2);
Chicken temp = x;
x = y;
y = temp;
z = x;

Oct 25, 2023 Sprenkle - CSCI209 9

baby

ed

mo

z

x

y

temp

What Happens in This Code?
Chicken x, y;
Chicken z = new Chicken("baby", 5, 1.0);
x = new Chicken("ed", 81, 10.3);
y = new Chicken("mo", 63, 6.2);
Chicken temp = x;
x = y;
y = temp;
z = x;

Oct 25, 2023 Sprenkle - CSCI209 10

baby

ed

mo

z

x

y

temp

What Happens in This Code?
Chicken x, y;
Chicken z = new Chicken("baby", 5, 1.0);
x = new Chicken("ed", 81, 10.3);
y = new Chicken("mo", 63, 6.2);
Chicken temp = x;
x = y;
y = temp;
z = x;

Oct 25, 2023 Sprenkle - CSCI209 11

baby

ed

mo

z

x

y

temp

What Happens in This Code?
Chicken x, y;
Chicken z = new Chicken("baby", 5, 1.0);
x = new Chicken("ed", 81, 10.3);
y = new Chicken("mo", 63, 6.2);
Chicken temp = x;
x = y;
y = temp;
z = x;

Oct 25, 2023 Sprenkle - CSCI209 12

baby

ed

mo

z

x

y

temp

What Happens in This Code?
Chicken x, y;
Chicken z = new Chicken("baby", 5, 1.0);
x = new Chicken("ed", 81, 10.3);
y = new Chicken("mo", 63, 6.2);
Chicken temp = x;
x = y;
y = temp;
z = x;

Oct 25, 2023 Sprenkle - CSCI209 13

Whoops! Lost “baby” chicken! -- No object variable references it
Memory leak!

Luckily Java has garbage collectors to clean up the memory leak

baby

GARBAGE COLLECTION

Oct 25, 2023 Sprenkle - CSCI209 14

Memory Management
•Early languages (e.g., C): free memory when you’re

done with it
•In C++ and some other OOP languages, classes have

explicit destructor methods that run when an object
is no longer in scope

•Java provides automatic garbage collection
ØReclaims memory allocated for objects that are no longer

referenced

Oct 25, 2023 Sprenkle - CSCI209 15

Garbage Collector
•Garbage collector is low-priority thread

ØOr runs when available memory gets tight
Øi.e., it doesn’t necessarily immediately free memory

•Before GC can clean up an object, the object may
have opened resources
ØEx: generated temp files or open network connections

that should be deleted/closed first
•GC calls object’s finalize() method

ØObject’s chance to clean up resources

Oct 25, 2023 Sprenkle - CSCI209 16

finalize()
• Inherited from java.lang.Object
• Called before garbage collector sweeps away an object and reclaims its

memory
• Should not be used for reclaiming resources

Ø i.e., close resources as soon as possible
Ø Why?

• When method is called is not deterministic or consistent
• Only know it will run sometime before garbage collection

• Clean up anything that cannot be atomically cleaned up by the garbage
collector
Ø Close file handles, network connections, database connections, etc.

• Note: no finalizer chaining
Ø Must explicitly call parent object’s finalize method

Oct 25, 2023 Sprenkle - CSCI209 17

Alternatives to finalize
•Recall: unknown when finalize will execute—or if

it will execute
ØAlso heavy performance cost

•Solution: create your own terminating method
ØUser of class terminates when done using object

•Examples: File’s or Scanner’s close method
•May still want finalize() as a safety net if user

didn’t call the terminate method
ØLog a warning message so user knows error in code

Oct 25, 2023 Sprenkle - CSCI209 18Do you know what Python does?

Python Garbage Collection
• Python also does garbage collection
• Python does reference counting

ØOn each reference/dereference, update the number of references to
the object
• Can’t handle reference cycles

• Python also does generational garbage
collection to handle reference cycles

• Tradeoffs with Java’s Garbage Collection
ØSynchronous (not asynchronous) process (i.e., slows down execution)
ØCheaper memory costs than Java for keeping track of what can be

garbage collected

Oct 25, 2023 Sprenkle - CSCI209 19

1

1

1

var

01

Discussion: Benefits and limitations of garbage collection?

Garbage Collection

Benefits

• Programmer doesn’t need to
worry about memory
management

• Cleans up unused memory
automatically, eventually

• Programmer can never release
memory that is then accessed
(a.k.a. seg faults)

Drawbacks

• Programmer doesn’t worry about
memory management
Ø May not be as careful to avoid memory

leaks

• Memory could be cleaned up
sooner

• Requires resources (CPU,
memory) to keep track of memory

• Slows program execution

Oct 25, 2023 Sprenkle - CSCI209 20

Garbage Collection

Benefits

• Programmer doesn’t need to
worry about memory
management

• Cleans up unused memory
automatically, eventually

• Programmer can never release
memory that is then accessed
(a.k.a. seg faults)

Drawbacks

• Programmer doesn’t worry about
memory management
Ø May not be as careful to avoid memory

leaks

• Memory could be cleaned up
sooner

• Requires resources (CPU,
memory) to keep track of memory

• Slows program execution

Oct 25, 2023 Sprenkle - CSCI209 21

• Generally, programmer time is more
valuable than computer resources.

• Generally, less buggy code is preferred
to more efficient code.

COMPILATION

Oct 25, 2023 Sprenkle - CSCI209 22

Review
•What does the compiler do?
•How is compiling different from interpreting?

Oct 25, 2023 Sprenkle - CSCI209 23

Compiling
• Translates high-level programming language to machine

code or byte code
ØJava: .java à .class == bytecode
ØHolistic view of the program

• Compiler optimization techniques
ØGenerate efficient bytecode/machine code
ØIn Java: static typing for additional gains

• Can execute generated code multiple times
ØPerformance gain
ØInterpreted à have to re-verify the code each time executed

Oct 25, 2023 Sprenkle - CSCI209 24

Python Interpreter
1. Validates Python programming language expression(s)

• Enforces Python syntax rules
• Reports syntax errors

2. Executes expression(s)

Oct 25, 2023 Sprenkle - CSCI209 25

Interpreter
(python)

Python
expression

Output Executable
bytecode

Only if no syntax errors

(not pure interpreting)

Caches compiled byte code
in __pycache__

Compiler
(javac)

Java Compiler

•Lexical analysis, parsing, semantic analysis, code
generation, and code optimization

•Code optimization: dead code eliminator, inline
expansion, constant propagation, …

Oct 25, 2023 Sprenkle - CSCI209 26

Java
file

Java
class

Source code JVM executable code

Compiled vs Interpreted Languages
Compiled
- Spends a lot of time analyzing and

processing the program
• Resulting executable is some form

of machine- specific binary code
• Computer hardware interprets

(executes) resulting code
üProgram execution is fast

Ø Efficient machine/byte code
generation

Ø Performance gains

Interpreted
üRelatively little time spent analyzing

and processing the program
• Resulting code is some sort of

intermediate code
• Another program interprets

resulting code
- Program execution is relatively slow
üFaster development/prototyping

Oct 25, 2023 Sprenkle - CSCI209 27

In pure forms

Compiler Optimization Examples*
•What is the optimization?
ØHow is the resulting code more efficient?

•For each optimization approach, generally,
Øshould you make these optimizations yourself?
ØOr, is it something that only the compiler should do?
ØKey question: what is likely to change?

Oct 25, 2023 Sprenkle - CSCI209 28

*Not literally what the code optimizations look like
• Optimizations are in byte code
• CSCI210 may help illuminate why these decrease runtime

Compiler Optimization: Example 1

Oct 25, 2023 Sprenkle - CSCI209 29

for(int i = 0; i < 10; i++) {
int j = 10;

 System.out.println(i + ", " + j);
}

int j = 10;
for(int i = 0; i < 10; i++) {

System.out.println(i + ", " + j);
}

for(int i = 0; i < 10; i++) {
System.out.println(i + ", " + 10);

}

Original:

Optimization 1

Optimization 2

Compiler Optimization: Example 2

Oct 25, 2023 Sprenkle - CSCI209 30

for(int i = 0; i < 10; i++) {
if(i == 0) {

System.out.println("Do this");
}
else {

System.out.println("Do that");
}

}
System.out.println("Do this");

for(int i = 1; i < 10; i++) {
System.out.println("Do that");

}
System.out.println("Do this");
System.out.println("Do that");
System.out.println("Do that");
System.out.println("Do that");
…

Original:

Optimization 1

Optimization 2

Compiler Optimization: Example 3

Oct 25, 2023 Sprenkle - CSCI209 31

public void f(int i) {
a[0] = i + 0;
a[1] = i * 0;
a[2] = i - i;
a[3] = 1 + i + 1;

}

public void f(int i) {
a[0] = i;
a[1] = 0;
a[2] = 0;
a[3] = i + 2;

}

Original:

Optimization 1

Compiler Optimization: Example 4

Oct 25, 2023 Sprenkle - CSCI209 32

int add(int x, int y) {
 return x + y;
}

int sub(int x, int y) {
 return add(x, -y);
}

int sub(int x, int y) {
 return x + -y;
}

int sub(int x, int y) {
 return x - y;
}

Original:

Optimization 1

Optimization 2

add method stays the same

Compiler Optimization: Example 5

Oct 25, 2023 Sprenkle - CSCI209 33

class Parent {
 void final f() {
 System.out.println("f");
 }
}

for(Parent p : parentArray) {
 p.f(); // check p’s actual type at runtime
 // and execute its method f
}

for(Parent p : parentArray) {
 System.out.println("f");
}

Optimization:

Compiler Tradeoffs
•Upfront costs

ØSearching for optimizations
ØMake optimizations

• Typically not Big-O efficiency improvements (unless program is
written really inefficiently)

ØIterative process: make optimizations and then look for
more optimizations

•Improved runtime
ØExpect executed many more times than compiled

Oct 25, 2023 Sprenkle - CSCI209 34

Looking Ahead
•Monday: Assignment 5
ØPeople are having trouble with their Eclipse set up, so

start soon if you haven’t already!

Oct 25, 2023 Sprenkle - CSCI209 35

