
Objectives
•Streams wrap up
•Java Wrap Up
ØGarbage Collection
ØCompiler optimizations
ØComparing with Python
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Review
1. What is a stream?
2. What are 3 different ways to categorize Java stream 

classes?
3. What design decisions did Java make in creating streams 

and what are the tradeoffs of those decisions?
Ø The design decision could mirror design decisions in other 

instances/fields/domains.  What is an analogy or example of 
the same design decision?

4. What does the compiler do?
Ø How is compiling different from interpreting?
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Summary: Streams
•Abstraction: streams – sequences of data
•Two categories of classes based on type of data they 

handle
ØBytes: InputStream OutputStream
ØText: Reader Writer

•Two categories of classes based on their source
ØData Source (primary source)
ØFiltered (another stream)
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Summary: Using Streams
•Can combine streams to get the custom functionality 

you want
ØConvenience classes for some common combinations

•Development decisions: What do I want this stream 
to do?
ØWhat kind of data is it dealing with?
ØWhat filtering/functionality do I want?

•Select the streams that provide that functionality 
and connect them (or use convenience class)
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Discussion: Stream Design Decisions
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Discussion: Stream Design Decisions

•Alternative: Creating a class for every combination 
would result in even more classes and a lot of 
redundant code
ØConsider what is required if some functionality must be 

updated
ØTricky for user to pull together various streams BUT also 

would be hard to find the class you want that has the right 
combination of functionality 
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Combine different types of streams
to get functionality you want



What Happens in This Code?
Chicken x, y;
Chicken z = new Chicken("baby", 5, 1.0);
x = new Chicken("ed", 81, 10.3);
y = new Chicken("mo", 63, 6.2);
Chicken temp = x;
x = y;
y = temp;
z = x;
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Whoops!  Lost “baby” chicken! -- No object variable references it
Memory leak!

Luckily Java has garbage collectors to clean up the memory leak

baby



GARBAGE COLLECTION
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Memory Management
•Early languages (e.g., C): free memory when you’re 

done with it
•In C++ and some other OOP languages, classes have 

explicit destructor methods that run when an object 
is no longer in scope

•Java provides automatic garbage collection 
ØReclaims memory allocated for objects that are no longer 

referenced
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Garbage Collector
•Garbage collector is low-priority thread

ØOr runs when available memory gets tight
Øi.e., it doesn’t necessarily immediately free memory

•Before GC can clean up an object, the object may 
have opened resources
ØEx: generated temp files or open network connections 

that should be deleted/closed first
•GC calls object’s finalize() method

ØObject’s chance to clean up resources

Oct 25, 2023 Sprenkle - CSCI209 16



finalize()
• Inherited from java.lang.Object
• Called before garbage collector sweeps away an object and reclaims its 

memory
• Should not be used for reclaiming resources

Ø i.e., close resources as soon as possible
Ø Why?

• When method is called is not deterministic or consistent
• Only know it will run sometime before garbage collection

• Clean up anything that cannot be atomically cleaned up by the garbage 
collector
Ø Close file handles, network connections, database connections, etc.

• Note: no finalizer chaining
Ø Must explicitly call parent object’s finalize method
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Alternatives to finalize
•Recall: unknown when finalize will execute—or if 

it will execute
ØAlso heavy performance cost

•Solution: create your own terminating method
ØUser of class terminates when done using object

•Examples: File’s or Scanner’s close method
•May still want finalize() as a safety net if user 

didn’t call the terminate method
ØLog a warning message so user knows error in code
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Python Garbage Collection
• Python also does garbage collection
• Python does reference counting

ØOn each reference/dereference, update the number of references to 
the object
• Can’t handle reference cycles

• Python also does generational garbage 
collection to handle reference cycles

• Tradeoffs with Java’s Garbage Collection
ØSynchronous (not asynchronous) process (i.e., slows down execution)
ØCheaper memory costs than Java for keeping track of what can be 

garbage collected
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Garbage Collection

Benefits

• Programmer doesn’t need to 
worry about memory 
management

• Cleans up unused memory 
automatically, eventually

• Programmer can never release 
memory that is then accessed 
(a.k.a. seg faults)

Drawbacks

• Programmer doesn’t worry about 
memory management
Ø May not be as careful to avoid memory 

leaks

• Memory could be cleaned up 
sooner

• Requires resources (CPU, 
memory) to keep track of memory

• Slows program execution
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• Generally, programmer time is more 
valuable than computer resources.

• Generally, less buggy code is preferred 
to more efficient code.



COMPILATION
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Review
•What does the compiler do?
•How is compiling different from interpreting?
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Compiling
• Translates high-level programming language to machine 

code or byte code
ØJava: .java à .class == bytecode
ØHolistic view of the program

• Compiler optimization techniques
ØGenerate efficient bytecode/machine code
ØIn Java: static typing for additional gains

• Can execute generated code multiple times
ØPerformance gain
ØInterpreted à have to re-verify the code each time executed
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Python Interpreter
1. Validates Python programming language expression(s)

• Enforces Python syntax rules
• Reports syntax errors

2. Executes expression(s)
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Interpreter
(python)

Python
expression

Output Executable
bytecode

Only if no syntax errors

(not pure interpreting)

Caches compiled byte code 
in __pycache__



Compiler
(javac)

Java Compiler

•Lexical analysis, parsing, semantic analysis, code 
generation, and code optimization

•Code optimization: dead code eliminator, inline 
expansion, constant propagation, …
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Compiled vs Interpreted Languages
Compiled
- Spends a lot of time analyzing and 

processing the program
• Resulting executable is some form 

of machine- specific binary code
• Computer hardware interprets 

(executes) resulting code
üProgram execution is fast

Ø Efficient machine/byte code 
generation

Ø Performance gains

Interpreted
üRelatively little time spent analyzing 

and processing the program
• Resulting code is some sort of 

intermediate code
• Another program interprets 

resulting code
- Program execution is relatively slow
üFaster development/prototyping
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In pure forms



Compiler Optimization Examples*
•What is the optimization?
ØHow is the resulting code more efficient?

•For each optimization approach, generally,
Øshould you make these optimizations yourself?
ØOr, is it something that only the compiler should do?
ØKey question: what is likely to change?
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*Not literally what the code optimizations look like 
• Optimizations are in byte code
• CSCI210 may help illuminate why these decrease runtime



Compiler Optimization: Example 1
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for(int i = 0; i < 10; i++ ) {
int j = 10;

 System.out.println(i + ", " + j);
}

int j = 10;
for(int i = 0; i < 10; i++ ) {

System.out.println(i + ", " + j);
}

for(int i = 0; i < 10; i++ ) {
System.out.println(i + ", " + 10);

}

Original: 

Optimization 1

Optimization 2



Compiler Optimization: Example 2
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for( int i = 0; i < 10; i++ ) {
if( i == 0 ) {

System.out.println("Do this");
}
else {

System.out.println("Do that");
}

}
System.out.println("Do this");

for( int i = 1; i < 10; i++ ) {
System.out.println("Do that");

}
System.out.println("Do this");
System.out.println("Do that");
System.out.println("Do that");
System.out.println("Do that");
…

Original: 

Optimization 1

Optimization 2



Compiler Optimization: Example 3
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public void f(int i) {
a[0] = i + 0;
a[1] = i * 0;
a[2] = i - i;
a[3] = 1 + i + 1;

}

public void f(int i) {
a[0] = i;
a[1] = 0;
a[2] = 0;
a[3] = i + 2;

}

Original: 

Optimization 1



Compiler Optimization: Example 4
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int add(int x, int y) {
    return x + y;
}

int sub(int x, int y) {
    return add(x, -y);
}

int sub(int x, int y) {
    return x + -y;
}

int sub(int x, int y) {
    return x - y;
}

Original: 

Optimization 1

Optimization 2

add method stays the same



Compiler Optimization: Example 5
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class Parent {
 void final f() {
        System.out.println("f");
 }
}

for( Parent p : parentArray ) {
 p.f(); // check p’s actual type at runtime
    // and execute its method f
}

for( Parent p : parentArray ) {
  System.out.println("f");
}

Optimization:



Compiler Tradeoffs
•Upfront costs

ØSearching for optimizations
ØMake optimizations

• Typically not Big-O efficiency improvements (unless program is 
written really inefficiently)

ØIterative process: make optimizations and then look for 
more optimizations

•Improved runtime
ØExpect executed many more times than compiled
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Looking Ahead
•Monday: Assignment 5
ØPeople are having trouble with their Eclipse set up, so 

start soon if you haven’t already!
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