
Objectives
•Compiler Optimizations
•Python vs Java
•Software Development
ØAgile

Oct 27, 2023 Sprenkle - CSCI209 1

Review
1.What is garbage collection?

Ø How does it work in Java?
Ø What are the tradeoffs in garbage collection?

2.What does the compiler do?
Ø How is compiling different from interpreting?

3. Compare Java and Python
Ø First, focus on their characteristics (just the facts, not

tradeoffs)
Ø Then, think about pros and cons, preferences

Oct 27, 2023 Sprenkle - CSCI209 2

Get out the compiler
optimization handouts

Compiled vs Interpreted Languages
Compiled
- Spends a lot of time analyzing and

processing the program
• Resulting executable is some form

of machine- specific binary code
• Computer hardware interprets

(executes) resulting code
üProgram execution is fast

Ø Efficient machine/byte code
generation

Ø Performance gains

Interpreted
üRelatively little time spent analyzing

and processing the program
• Resulting code is some sort of

intermediate code
• Another program interprets

resulting code
- Program execution is relatively slow
üFaster development/prototyping

Oct 27, 2023 Sprenkle - CSCI209 3

In pure forms

Compiler Optimization Examples*
•What is the optimization?
ØHow is the resulting code more efficient?

•For each optimization approach, generally,
Øshould you make these optimizations yourself?
ØOr, is it something that only the compiler should do?
ØKey question: what is likely to change?

Oct 27, 2023 Sprenkle - CSCI209 4

*Not literally what the code optimizations look like
• Optimizations are in byte code
• CSCI210 may help illuminate why these decrease runtime

Compiler Optimization: Example 1

Oct 27, 2023 Sprenkle - CSCI209 5

for(int i = 0; i < 10; i++) {
int j = 10;

 System.out.println(i + ", " + j);
}

int j = 10;
for(int i = 0; i < 10; i++) {

System.out.println(i + ", " + j);
}

for(int i = 0; i < 10; i++) {
System.out.println(i + ", " + 10);

}

Original:

Optimization 1

Optimization 2

Compiler Optimization: Example 2

Oct 27, 2023 Sprenkle - CSCI209 6

for(int i = 0; i < 10; i++) {
if(i == 0) {

System.out.println("Do this");
}
else {

System.out.println("Do that");
}

}
System.out.println("Do this");

for(int i = 1; i < 10; i++) {
System.out.println("Do that");

}
System.out.println("Do this");
System.out.println("Do that");
System.out.println("Do that");
System.out.println("Do that");
…

Original:

Optimization 1

Optimization 2

Compiler Optimization: Example 3

Oct 27, 2023 Sprenkle - CSCI209 7

public void f(int i) {
a[0] = i + 0;
a[1] = i * 0;
a[2] = i - i;
a[3] = 1 + i + 1;

}

public void f(int i) {
a[0] = i;
a[1] = 0;
a[2] = 0;
a[3] = i + 2;

}

Original:

Optimization 1

Compiler Optimization: Example 4

Oct 27, 2023 Sprenkle - CSCI209 8

int add(int x, int y) {
 return x + y;
}

int sub(int x, int y) {
 return add(x, -y);
}

int sub(int x, int y) {
 return x + -y;
}

int sub(int x, int y) {
 return x - y;
}

Original:

Optimization 1

Optimization 2

add method stays the same

Compiler Optimization: Example 5

Oct 27, 2023 Sprenkle - CSCI209 9

class Parent {
 void final f() {
 System.out.println("f");
 }
}

for(Parent p : parentArray) {
 p.f(); // check p’s actual type at runtime
 // and execute its method f
}

for(Parent p : parentArray) {
 System.out.println("f");
}

Optimization:

Compiler Tradeoffs
•Upfront costs

ØSearching for optimizations
ØMake optimizations

• Typically not Big-O efficiency improvements (unless program is
written really inefficiently)

ØIterative process: make optimizations and then look for
more optimizations

•Improved runtime
ØExpect executed many more times than compiled

Oct 27, 2023 Sprenkle - CSCI209 10

Different Perspectives on the Program
To the Compiler
• This is my one shot to validate the

program and optimize it!

To You/Developer
• The long view: I am compiling the

program now, but I could change
the program later.
Ø It should be easy to update the

program; otherwise, I could
introduce bugs.

Oct 27, 2023 Sprenkle - CSCI209 11

LANGUAGE COMPARISON

Oct 27, 2023 Sprenkle - CSCI209 12

Language Comparison
Java Python

Oct 27, 2023 Sprenkle - CSCI209 13

1) Focus on their characteristics (just the facts, not tradeoffs)
2) Pros and cons, preferences

Language Comparison
Java
• Entirely Object-oriented*

Ø Procedural
Ø Functional - newer

• Statically, strongly typed
• Compiled

Python
• Object-oriented

Ø Also procedural and functional
programming

• Dynamically, strongly typed
• Interpreted

Oct 27, 2023 Sprenkle - CSCI209 14

Pros and cons of using each?

Rest of the Semester
• Shift from learning Java, specifically, to learning how to

develop software (abstractly) with Java as our
implementation/example

• Why Java?
ØPopular language
ØMany frameworks and tools for Java
ØJava’s structure allows for strict adherence to design

techniques
• Just a start on Java

ØYou’ll need to continue learning more Java on your own

Oct 27, 2023 Sprenkle - CSCI209 15

SOFTWARE DEVELOPMENT

Oct 27, 2023 Sprenkle - CSCI209 16

Programming is not Software Engineering

•This course is software development…
ØWe’re moving from programming towards software

engineering
ØOne metric: how long you think before you code

Oct 27, 2023 Sprenkle - CSCI209 17

“It's Programming if ‘clever’ is a compliment.
It's Software Engineering if ‘clever’ is an accusation.”
 -- Titus Winters, Google Software Engineer

https://twitter.com/tituswinters/status/1143595692113481728

Extra credit

No Silver Bullet:
Essence and Accidents of Software Engineering
“Of all the monsters that fill the nightmares of our folklore, none terrify more than
werewolves, because they transform unexpectedly from the familiar into horrors. For
these, one seeks bullets of silver that can magically lay them to rest.

“The familiar software project, at least as seen by the nontechnical manager, has
something of this character; it is usually innocent and straightforward, but is capable of
becoming a monster of missed schedules, blown budgets, and flawed products. So we hear
desperate cries for a silver bullet—something to make software costs drop as rapidly as
computer hardware costs do.

“But, as we look to the horizon of a decade hence, we see no silver bullet. There is no
single development, in either technology or in management technique, that by itself
promises even one order-of-magnitude improvement in productivity, in reliability, in
simplicity. In this article, I shall try to show why, by examining both the nature of the
software problem and the properties of the bullets proposed.”

Oct 27, 2023 Sprenkle - CSCI209 18by Frederick P. Brooks, Jr., 1986

Software Engineering
•Software Engineering is a relatively new field
ØStill learning best practices

Oct 27, 2023 Sprenkle - CSCI209 20

Takeaway: We will employ lots of techniques that
help make software development process more

efficient without sacrificing software quality

How to Implement an Effective Solution
1. Understand the problem
2. Understand external constraints
3. Design an effective solution to the problem
4. While designing the solution, design some tests to

verify that the problem is solved (and remains
solved)

5. Code the effective solution to the problem
6. Teach other team members about your solution to

the problem
Oct 27, 2023 Sprenkle - CSCI209 21

How to Implement an Effective Solution
1. Understand the problem (interact with people)
2. Understand external constraints (interact with people)
3. Design an effective solution to the problem
4. While designing the solution, design some tests to verify

that the problem is solved (and remains solved)
5. Code the effective solution to the problem
6. Teach other team members about your solution to the

problem (interact with people)

Oct 27, 2023 Sprenkle - CSCI209 22

Traditional Software Engineering Process:
Waterfall Model

Oct 27, 2023 Sprenkle - CSCI209 23

Requirements

Design

Implementation

Integration

Acceptance

Release/
Maintenance

Validate at each step
Goal: Each stage is 100% complete
before moving to next step

Feedback in Waterfall Model

Oct 27, 2023 Sprenkle - CSCI209 24

• Get feedback at each stage
and revisit previous stage if necessary

Requirements

Design

Implementation

Integration

Acceptance

Release/
Maintenance

Feedback in Waterfall Model

Oct 27, 2023 Sprenkle - CSCI209 25

• Problems may be revealed
in later stages
• What happens if problems aren’t revealed

until Acceptance?

Requirements

Design

Implementation

Integration

Acceptance

Release/
Maintenance

Iterative Design

Oct 27, 2023 Sprenkle - CSCI209 26

Design

Evaluate Implement
Get feedback/requirements
from users/clients

Goals: Frequent feedback
àIdentify problems early
àHigher quality product

Various implementations

Spiral Model
• Idea: smaller prototypes to

test/fix/throw away
Ø Finding problems early costs less

• In general…
Ø Break functionality into smaller

pieces
Ø Implement most depended-on or

highest-priority features first

Oct 27, 2023 Sprenkle - CSCI209 27

Design

ImplementEvaluate

Prototypes

Radial dimension: cost
[Boehm 86]

Looking Ahead
•No office hours today
•Assignment 5 due next Friday

Oct 27, 2023 Sprenkle - CSCI209 28

