
Objectives
•Coverage
•Testing wrap up

Nov 6, 2023 Sprenkle - CSCI209 1

Testing Project Recommendations
•Do what you did to test classes previously, but adapt

for JUnit framework
•Create your testing process
•Decide on your assumptions

ØBe consistent
•Encode the specifications for the code in your tests

ØCode must pass these to show that it is correct
•Check the FAQ

Nov 6, 2023 Sprenkle - CSCI209 2

Review
1.What is our git workflow when we’re

collaborating with teammates?
Ø Both variations (why 2 variations?)

2.How should teams work together for success?
3.What is code coverage?
4.What is code coverage criteria?
Ø Provide examples of code coverage criteria

Nov 6, 2023 Sprenkle - CSCI209 3

Review: Workflow
•Before picking up again on development, pull the

repository
ØGet others’ changes to main; merge into your branch

Nov 6, 2023 Sprenkle - CSCI209 4

Review:
Collaboration: Workflow – Seeking Feedback
1. Create a branch for your work from main

Ø Commit periodically
Ø Write descriptive comments so your team members know what you did and

why
2. Push your branch
3. In GitHub, open a Pull Request on your branch

Ø You can tag your teammates to let them know that you’ve completed your
work

Ø Team: discuss and review potential changes – can still update
4. Merge pull request into main branch (when ready)
5. Pull the main branch to get the latest code

Ø May want to merge main into your branch

Nov 6, 2023 Sprenkle - CSCI209 5

Don’t work directly in main

Review: Collaboration: Workflow
1. Create a branch for your work from main

ØCommit periodically
ØWrite descriptive comments so your team members know what

you did and why
2. Switch to main
3. Pull main branch
4. Merge your branch into the main branch

Ø Handle merge conflicts
Ø Commit

5. Push main branch
Nov 6, 2023 Sprenkle - CSCI209 6

Don’t work directly in main

Your actions should match what your team says
are your squad goals.

Nov 6, 2023 Sprenkle - CSCI209 7

Culture Eats Strategy for Breakfast

Review: Code Coverage
•Code coverage: the amount of code that your

tests execute
•Code coverage criteria: metric or measure used
ØStatement: number/% of statements executed
ØBranch: number/% of statements + branches

(conditions, loops) executed
ØPath: number/% of paths executed

Nov 6, 2023 Sprenkle - CSCI209 8

Path Coverage
• Cover all paths in program’s

flow
•How many paths through this

method? 4
Ø1-2-3-5-6-8
Ø1-2-3-5-7-8
Ø1-2-4-5-6-8
Ø1-2-4-5-7-8

•What test cases would give
us path coverage?
ØOne possibility: a = 3, 30, 6, 10

Nov 6, 2023 Sprenkle - CSCI209 99

exampleMethod(int a)

if(a < 7)

return str.substring(6);

a *= 2;
str += "riv";

str = "co"
+ str;

if(a > 10)

str += "ing"; str += "es";

true

true

false

false

String str = "d";
1

2

3 4

5

6 7

8

Example 3

Nov 6, 2023 Sprenkle - CSCI209 10

int gcd(int x, int y)

while(x > 0 && y > 0)

if(x > y)

x -= y; y -= x;

/**
 * Euclid's algorithm to calculate
 * greatest common divisor
 */
public int gcd(int x, int y) {
 while (x > 0 && y > 0) {
 if(x > y) {
 x -=y ;
 } else {
 y -=x;
 }
 }
 return x+y;
}

return x+y;

true

false

falsetrue

1

2

3 4

5

6

Path Coverage
•How many paths through

this method?
ØToo many to count, test

them all!

Nov 6, 2023 Sprenkle - CSCI209 11

int gcd(int x, int y)

while(x > 0 && y > 0)

if(x > y)

x -= y; y -= x;

return x+y;

true

false

false
1-6
1-2-3-5-1-6
1-2-4-5-1-6
1-2-3-5-1-2-3-5-1-6
1-2-4-5-1-2-4-5-1-6
1-[2-(3|4)-5-1]*-6

1

2

3 4

5

6

true

Testing Continuum

Nov 6, 2023 Sprenkle - CSCI209 12

No testing Exhaustive
Testing

Branch-
Coverage

Statement-
Coverage

Path-
Coverage

Comparison of Coverage Criteria

Nov 6, 2023 Sprenkle - CSCI209 13

Coverage
Criterion Advantages Disadvantages

Statement

Branch

Path

No
testing

Exhaustive
TestingBranchStatement Path

Consider how you would incorporate code coverage into your process

Comparison of Coverage Criteria

Nov 6, 2023 Sprenkle - CSCI209 14

Coverage
Criterion Advantages Disadvantages

Statement Practical Weak, may miss
many faults

Branch Practical, Stronger
than Statement Weaker than Path

Path Strongest Infeasible, too many
paths to be practical

No
testing

Exhaustive
TestingBranchStatement Path

How Can We Use Coverage Criteria?

Nov 6, 2023 Sprenkle - CSCI209 15

Uses of Coverage Criteria
•“Stopping” rule à sufficient testing
ØAvoid unnecessary, redundant tests

•Measure test quality
ØDependability estimate
ØConfidence in estimate

•Specify test cases
ØDescribe additional test cases needed

Nov 6, 2023 Sprenkle - CSCI209 16

Coverage Criteria Discussion
•Is it always possible for a test suite to cover all the

statements in a given program?
ØNo. Could be infeasible statements

• Unreachable code
• Legacy code
• Configuration that is not on site

•Do we need the test suite to cover 100% of
statements/branches to believe it is adequate?
Ø100% coverage does not mean correct program
ØBut < 100% coverage does mean testing inadequacy

Nov 6, 2023 Sprenkle - CSCI209 17

True/False Quiz
•A program that passes all test cases in a test suite

with 100% path coverage is bug-free.
ØFalse.
ØExamples:

•The test suite may cover a faulty path with data values that
don’t expose the fault.
ØTowards Exhaustive Testing

•Errors of omission
ØMissing a whole if

Nov 6, 2023 Sprenkle - CSCI209 18

Example

Nov 6, 2023 Sprenkle - CSCI209 19

exampleMethod(int a)

int b=60;

if(a < 7)

return b;

a += 2; a -= 10;

if(a > 10)

b *= 2; b /= a;

Test Suite:
 3-7: a=3
 4-6: a=30
 3-6: a=6
 4-7: a=9

But, error shows up with
 3-7: a=0
 4-7: a=10

1

true

true

false

false

2

3 4

5

6 7

8 Could divide

by 0

Omission Example

Nov 6, 2023 Sprenkle - CSCI209 20

exampleMethod(int a)

int b=60;

if(a < 7)

return b;

a += 2; a -= 10;

if(a > 10)

b *= 2; b /= a;

1

true

true

false

false

2

3 4

5

6 7

8

Consider if the first if block
wasn’t in the code.
You could cover all the paths, but
you’re missing a crucial condition.

True/False Quiz
•When you add test cases to a test suite that

covers all statements so that it covers all
branches, the new test suite is more likely to be
better at exposing faults.
ØTrue.
ØYou’re adding test cases and covering new paths,

which may have faults.

Nov 6, 2023 Sprenkle - CSCI209 21

Which Test Suite Is Better?

•Branch-adequate suite is not necessarily better
than Statement-adequate suite
ØStatement-adequate suite could cover buggy paths

and include input value tests that Branch-adequate
suite doesn’t

Nov 6, 2023 Sprenkle - CSCI209 22

Statement-
adequate
Test Suite

Branch-
adequate
Test Suite

Example
•TS1 (Statement-Adequate):

Øa=0, 6
•TS2 (Branch-Adequate):

Øa=3, 30
•Statement-adequate will find

fault but branch-adequate
won’t
ØCovers the path that exposes

the fault

Nov 6, 2023 Sprenkle - CSCI209 23

exampleMethod(int a)

int b=60;

if(a < 7)

return b;

a *= 2;

if(a > 10)

b *= 2; b /= a;

Measuring Code Coverage
•Code coverage tool built into Eclipse
ØEclEmma

•More on this in the final project

Nov 6, 2023 Sprenkle - CSCI209 24

Software Testing: When is Enough Enough?
• Need to decide when tested enough

ØBalance goals of releasing application, high quality standards
• Can use program coverage as “stopping” rule

ØAlso measure of confidence in test suite
ØStatement, Branch, Path and their tradeoffs
ØUse coverage tools to measure statement, branch coverage

• Still, need to use some other “smarts” besides program
coverage for creating test cases

Nov 6, 2023 Sprenkle - CSCI209 25

No Silver Bullet
•Recall the Fred Brooks’ quote:

Ø“There is no single development, in either technology or in
management technique, that by itself promises even one
order-of-magnitude improvement in productivity, in
reliability, in simplicity.”

ØKnown as “no silver bullet”
•Test coverage is one tool that will help us improve

the quality of our code, but it will not solve
everything

Nov 6, 2023 Sprenkle - CSCI209 26

Productive Use of Time that isn’t Coding
•“Most programmers regard anything that doesn’t

generate code to be a waste of time. Thinking
doesn’t generate code, and writing code without
thinking is a recipe for bad code. Before we start to
write any piece of code, we should understand what
that code is supposed to do. Understanding requires
thinking, and thinking is hard.”

•In the words of the cartoonist Dick Guindon:
“Writing is nature’s way of letting you know how
sloppy your thinking is.”

Nov 6, 2023 Sprenkle - CSCI209 27Source: http://www.wired.com/opinion/2013/01/code-bugs-programming-why-we-need-specs

http://www.wired.com/opinion/2013/01/code-bugs-programming-why-we-need-specs

Looking Ahead
•Testing project due Wed at midnight
•Exam 2 this weekend

Nov 6, 2023 Sprenkle - CSCI209 28

