Objectives

® Analysis and Design

® Interpreting programming languages
® Final Project: Picasso

|||||||||||||||||||||||||||

Final Project: Picasso Specification

® User can enter expressions
Interactively or from file
Language is defined in specification

® Many possible extensions

Picasso: Final Project

® Today: focus on the requirements of the project
and bigger picture code organization

® Email with team info will come out before Wed’s
class

3 teams of 5, 1 teamof4

Project Deliverables Timeline
| Deliverable | Who | Weight | DueDate |

Preparation Analysis Individual 10% Fri, Nov 17

Preliminary

0 .
Implementation Team 15% Fri, Dec 1 Before class

Intermediate

. Team 15% Fri, Dec 8
Implementation

Team decides
—>latest 12/14

Analysis Individual 15% Fri, Dec 15

Final Implementation Team 45%

Week 1: Understand code base, analyze/plan project
Week 2: Implement preliminary functionality

Week 3: Implement intermediate functionality
Week 4: Implement final version of application

Nov 13, 2023 Sprenkle - CSCI209 4

Teams

CodeCatalysts Al Ben Janeet Reese Tyler
b gEule Alexandra Ashton Bianca Ciel John
Visionaries Chelsea Elle James Michael Wil

Lakpa Linh Liz Trey

Teams, alphabetically by first name

Nov 13, 2023 Sprenkle - CSCI209

Teams

GameChangers WA=y Chaz Han Jenna Lydia
Alexander Connor Desire Ford Nabil
Barrett Mark Nick Wonjun Zach

Colin Jack Renan Stephen

Teams, alphabetically by first name

Nov 13, 2023 Sprenkle - CSCI209

ANALYSIS & DESIGN: FORMALIZED

oooooooooooooooooooooooooo

Analysis Phase

® Create an abstract model in client’s vocabulary

® Strategy:

|dentify classes that model (shape) system as set of
abstractions

Determine each class’s purpose or main responsibility

® AP|
® State

Determine helper classes for each
® Help complete responsibilities

Nov 13, 2023 Sprenkle - CSCI209

Analysis Phase Discussion

® Expect to iterate

Won’t find all classes at first
® Especially helpers

Won’t know all responsibilities
® Uncertainty in problem statement
May be concerns that need to be settled

Try to understand requested software system at level of
those requesting software

® Rarely one true correct best design

Nov 13, 2023 Sprenkle - CSCI209

ldentification of Classes

® Potentially model the system

® Usually nouns from problem description or from
domain knowledge

® Model real world/problem domain whenever
possible

More understandable software

Helps during maintenance when someone unfamiliar
with system must update/fix code

Nov 13, 2023 Sprenkle - CSCI209 10

ldentifying Responsibilities

® Responsibilities convey purpose of class, its role
In system

® Questions to Ask:

What are the other responsibilities needed to model
the solution?

® Which class should take on this particular responsibility?

What classes help another class fulfill its
responsibility?

Nov 13, 2023 Sprenkle - CSCI209 11

Have You Modeled Everything?

® Strategy: Role playing
® Act as different classes: can you do everything you want in
various scenarios?
Fill in missing classes, responsibilities
Methods: parameters, what returned

Restructure as necessary
® No code yet so not actually refactoring

® Example use cases/scenarios:
A student tries to register for a class with no open seats
A professor looks at students’ interim grades

Nov 13, 2023 Sprenkle - CSCI209 12

Definition of Use Case

® Description of steps or actions between a user
and a software system towards some goal

®\What else can use cases be used for?
Test Cases!

Nov 13, 2023 Sprenkle - CSCI209

13

TEAM FINAL PROJECT

oooooooooooooooooooooooooo

Project Metrics

®>1700 lines of code
Even more by the time your team is done

® Good for gaining experience

Large (for a course) piece of existing code that you
need to build on

® Good for job interviews
Know the number of lines of code

Nov 13, 2023 Sprenkle - CSCI209

Final Project: Picasso Specification

® User can enter expressions
Interactively or from file
Language is defined in specification

® Many possible extensions

Picasso Project Overview

® Goal: Generate images from expressions

® Every pixel at position (x,y) gets assigned a color,
computed from its x- and y-coordinate and
the given expression
Range for x and yis [-1, 1]

® Colors are represented as RGB
(red, green, blue) values

Points are (x,y)
(_1; _1) X (11 _1)

R, G, B component’s range: [-1, 1] y
Black is [-1,-1,-1]
Redis [1,-1,-1]
(_11 1) (11 1)

Yellowis [1, 1,-1]

How is white represented?

Nov 13, 2023 Sprenkle - CSCI209 17

Generating Images from Expressions

® Expressions at a specific (x,y) point/pixel evaluate
to RGB colors [r,g,b]

pixels[x][y] = expression.evaluate(x, y)

®x evaluates to RGB color [x, x, x]
®|n top right corner, (L1 x (1-1)
X evaluatesto [1, 1, 1]

y evaluates to [-1, -1, -1]

(-1, 1) (1, 1)

Nov 13, 2023 Sprenkle - CSCI209 18

Generating Images from Expressions

For all x:
For all y:
pixels[x][y] = expression.evaluate(x, y)

(-1,-1) x (1,-1)
© ©

Consider evaluating expression as
f(x, y) = expression v
at various points in the image

(-1, 1) (1, 1)

Nov 13, 2023 Sprenkle - CSCI209

19

Generating Images from Expressions

For all x:
For all y:
pixels[x][y] = expression.evaluate(x, y)

(-1,-1) x (1,-1)
© ©

Consider evaluating expression as
f(x, y) = expression v
at various points in the image

Example: expression is x+y (-1, 1) (1, 1)

Nov 13, 2023 Sprenkle - CSCI209

20

Resulting Image for x+y

[-2,-2,-2]
-2 [-1, -1, -1]

e [0, 0, 0]

e Recall that color range is

clamped to range [-1, 1] y
* Green outline for framing

purposes only

°12, 2, 2]
-2 (1,1, 1]

[0,0,0]"

Nov 13, 2023 Sprenkle - CSCI209 21

Generating Images from Expressions

For all x:

For all y:
pixels[x][y] = expression.evaluate(x, y)

(-1,-1) x (1,-1)
© o

Consider evaluating expression as
f(x, y) = expression Y .
at various points in the image
o ([
(_11 1) (11 1)

Nov 13, 2023

What is the resulting image if the expression is
e [-1, 1, -1] >
e X 7
¢ X*y ?

22

Generated Images from Expressions

[-1, 1, -1]

For all x:
For all y:
pixels[x][y] = expression.evaluate(x, y)

Nov 13, 2023 Sprenkle - CSCI209

23

PROCESSING PROGRAMMING LANGUAGES

oooooooooooooooooooooooooo

Programming Language Syntax & Semantics

®*\What does an assignment statement look like in
Java?

What can be on the left hand side?

® What are the rules for an identifier in Java?
What can be on the right hand side?

® \What does a multiplication expression look like?
®* How do we evaluate arithmetic expressions?

Nov 13, 2023 Sprenkle - CSCI209 25

Programming Language Design

® Must be unambiguous

Programming Language defines a syntax and
semantics

® Interpreting programming languages
Parse program into tokens
Verify that tokens are in a valid form

Generate executable code
Execute code

Nov 13, 2023 Sprenkle - CSCI209

26

Parsing into Tokens
® Example: x =4*3; -2

<id> <assignment> <num> <mult> <num> <endofstmt>
® Example: x = * 3 5;

<id> <assignment> <mult> <num> <num> <endofstmt>

® Tokenizer doesn’t care if statement is not valid
handled in next step

® Error example: 1x = 4**3;
1x and ** are not valid tokens in Java

Nov 13, 2023 Sprenkle - CSCI209

27

Process of Understanding Code:
Building Your Mental Model

® Apply spiral model to understanding code
® Review problem specification (low-cost effort)

® Explore project at the top-level (low-cost effort)
Look at packages, class names

Don’t take a deep-dive until you have the bigger
picture

https://cs.wlu.edu/~sprenkles/cs209/projects/picasso/doc/

Nov 13, 2023 Sprenkle - CSCI209 28

Interpreting the Picasso Language

Picasso h OR
Expression :- -

Tokens

Expression

Evaluation of Tree
expression

Semantic
{ Interpreter h: OR B | e

Draw on Error

canvas

Nov 13, 2023 Sprenkle - CSCI209

29

Interpreting the Picasso Language

X*y

: N

Picasso OR
Expression j -
y,
Tokens
Expression
Evaluation of Tree

CMult 3

expression
X) Y) Semantic
[Interpreter h OR B | e
Draw on

Error

Sprenkle - CSCI209

canvas

Nov 13, 2023

<1d:x>
<mult>
<id:y>

30

What We Need to Do/Represent

® Lexical Analysis
® Semantic Analysis

® Evaluation

22222222222222222222222222

What We Need to Do/Represent

® | exical Analysis
Recognize/create tokens
Report errors in creating tokens
® Semantic Analysis

Convert infix tokens into postfix
® Report errors

Parse tokens into expressions (expression tree)
® Report errors

® Evaluation
Evaluate expressions

Nov 13, 2023 Sprenkle - CSCI209

32

Understanding the Code

®* How would you run Picasso?

®* How does the given code map to lexical analysis,
semantic analysis, and evaluation components?

Look for packages, classes that map to these steps

Nov 13, 2023 Sprenkle - CSCI209 33

Process of Understanding Code:
Building Your Mental Model

® Look for important words/terms from problem
domain

® Look for terms from design patterns
® Put code in black boxes or group code together

222222222222222222222222222

Process of Understanding Code:
Building Your Mental Model

® After you have the big picture, look at most important classes
® Decide: Does this class merit a closer look? Or do | just need the big
picture of what it does?
Lean towards the latter towards the beginning
Look for class hierarchy and focus on parent/base classes

® |terate!
Grow your mental model

What a “closer look” means changes over time

® Early: what public methods does the class have? What does the documentation say
they do? What do they return?

® Later: what do these methods do? How does this class interact with other objects?

Nov 13, 2023 Sprenkle - CSCI209 35

Interpreting the Picasso Language
Tokenizer, Java’s StreamTokenizer

~

Picasso OR tokens. *
Expression :- L
y
Tokens
Expression
Evaluation of Tree

expression

]—:I Semantic
{ Interpreter OR B | Analyzer
Draw on parser. *

canvas
expressions.*

Nov 13, 2023 Sprenkle - CSCI209 36

Understanding the Code: Lexical Analysis

® Process
pl1casso.parser.Tokenizer
picasso.parser.tokens.TokenFactory
® Output:
pl1casso.parser.tokens.*

FloorToken

Nov 13, 2023 Sprenkle - CSCI209

Understanding the Code: Semantic Analysis

® Process
plicasso.parser.ExpressionTreeGenerator
plcasso.parser.SemanticAnalyzer
plcasso.parser.*Analyzer

® Output
pl1casso.parser.language.expressions.*

FloorAnalyzer

Nov 13, 2023 Sprenkle - CSCI209 38

Understanding the Code: Evaluation

® Process

p1casso.parser.language.
ExpressionTreeNode

® Output:
RGBColor

*Displayed in P1xMap on Canvas

NNNNN ,2023 Sprenkle - CSCI209 F 1 oor

Understanding the Code: Evaluation

® Key Parent class:
picasso.parser.language.ExpressionTreeNode

public abstract RGBColor evaluate(double x, double y);

¢ “Old” version of expressions:
ReferencefForkExpressionkvaluations

Nov 13, 2023 Sprenkle - CSCI209 40

TODO

® Project Analysis due Friday

222222222222222222222222222

