
Objectives
•Analysis and Design
•Interpreting programming languages
•Final Project: Picasso

Nov 13, 2023 Sprenkle - CSCI209 1

Final Project: Picasso Specification
•User can enter expressions
ØInteractively or from file
ØLanguage is defined in specification

•Many possible extensions

Nov 13, 2023 Sprenkle - CSCI209 2

Picasso: Final Project
•Today: focus on the requirements of the project

and bigger picture code organization

•Email with team info will come out before Wed’s
class
Ø 3 teams of 5, 1 team of 4

Nov 13, 2023 Sprenkle - CSCI209 3

Project Deliverables Timeline
Deliverable Who Weight Due Date

Preparation Analysis Individual 10% Fri, Nov 17

Preliminary
Implementation Team 15% Fri, Dec 1

Intermediate
Implementation Team 15% Fri, Dec 8

Final Implementation Team 45% Team decides
àlatest 12/14

Analysis Individual 15% Fri, Dec 15

Nov 13, 2023 Sprenkle - CSCI209 4

Week 1: Understand code base, analyze/plan project
Week 2: Implement preliminary functionality
Week 3: Implement intermediate functionality
Week 4: Implement final version of application

Before class

Teams

CodeCatalysts AJ Ben Janeet Reese Tyler

Dynamos Alexandra Ashton Bianca Ciel John

Visionaries Chelsea Elle James Michael Will

Wizards Lakpa Linh Liz Trey

Nov 13, 2023 Sprenkle - CSCI209 5

Teams, alphabetically by first name

Teams
GameChangers Aiden Chaz Han Jenna Lydia

HotShots Alexander Connor Desire Ford Nabil

Invincibles Barrett Mark Nick Wonjun Zach

Phenoms Colin Jack Renan Stephen

Nov 13, 2023 Sprenkle - CSCI209 6

Teams, alphabetically by first name

ANALYSIS & DESIGN: FORMALIZED

Nov 13, 2023 Sprenkle - CSCI209 7

Analysis Phase
•Create an abstract model in client’s vocabulary
•Strategy:

1. Identify classes that model (shape) system as set of
abstractions

2. Determine each class’s purpose or main responsibility
• API
• State

3. Determine helper classes for each
• Help complete responsibilities

Nov 13, 2023 Sprenkle - CSCI209 8

“Doohickey”

Analysis Phase Discussion
•Expect to iterate

ØWon’t find all classes at first
• Especially helpers

ØWon’t know all responsibilities
•Uncertainty in problem statement

ØMay be concerns that need to be settled
ØTry to understand requested software system at level of

those requesting software
•Rarely one true correct best design

Nov 13, 2023 Sprenkle - CSCI209 9

Identification of Classes
•Potentially model the system
•Usually nouns from problem description or from

domain knowledge
•Model real world/problem domain whenever

possible
ØMore understandable software
ØHelps during maintenance when someone unfamiliar

with system must update/fix code
Nov 13, 2023 Sprenkle - CSCI209 10

Identifying Responsibilities
•Responsibilities convey purpose of class, its role

in system
•Questions to Ask:
ØWhat are the other responsibilities needed to model

the solution?
•Which class should take on this particular responsibility?

ØWhat classes help another class fulfill its
responsibility?

Nov 13, 2023 Sprenkle - CSCI209 11

Have You Modeled Everything?
• Strategy: Role playing
• Act as different classes: can you do everything you want in

various scenarios?
ØFill in missing classes, responsibilities
ØMethods: parameters, what returned
ØRestructure as necessary

• No code yet so not actually refactoring

• Example use cases/scenarios:
ØA student tries to register for a class with no open seats
ØA professor looks at students’ interim grades

Nov 13, 2023 Sprenkle - CSCI209 12

Definition of Use Case
•Description of steps or actions between a user

and a software system towards some goal

•What else can use cases be used for?
ØTest Cases!

Nov 13, 2023 Sprenkle - CSCI209 13

TEAM FINAL PROJECT

Nov 13, 2023 Sprenkle - CSCI209 14

Project Metrics
•>1700 lines of code
ØEven more by the time your team is done

•Good for gaining experience
ØLarge (for a course) piece of existing code that you

need to build on

•Good for job interviews
ØKnow the number of lines of code

Nov 13, 2023 Sprenkle - CSCI209 15

Final Project: Picasso Specification
•User can enter expressions
ØInteractively or from file
ØLanguage is defined in specification

•Many possible extensions

Nov 13, 2023 Sprenkle - CSCI209 16

Picasso Project Overview
• Goal: Generate images from expressions
• Every pixel at position (x,y) gets assigned a color,

computed from its x- and y-coordinate and
the given expression
ØRange for x and y is [-1, 1]

• Colors are represented as RGB
(red, green, blue) values
ØR, G, B component’s range: [-1, 1]
ØBlack is [-1,-1,-1]
ØRed is [1,-1,-1]
ØYellow is [1, 1,-1]

Nov 13, 2023 Sprenkle - CSCI209 17

(-1, -1) x

y

(1, 1)

(1, -1)

(-1, 1)

How is white represented?

Points are (x,y)

Generating Images from Expressions
•Expressions at a specific (x,y) point/pixel evaluate

to RGB colors [r,g,b]
Ø pixels[x][y] = expression.evaluate(x, y)

•x evaluates to RGB color [x, x, x]
•In top right corner,
• x evaluates to [1, 1, 1]
• y evaluates to [-1, -1, -1]

Nov 13, 2023 Sprenkle - CSCI209 18

(-1, -1) x

y

(1, 1)

(1, -1)

(-1, 1)

Generating Images from Expressions

Nov 13, 2023 Sprenkle - CSCI209 19

(-1, -1) x

y

(1, 1)

(1, -1)

(-1, 1)

For all x:
 For all y:
 pixels[x][y] = expression.evaluate(x, y)

Consider evaluating expression as
f(x, y) = expression

at various points in the image

Generating Images from Expressions

Nov 13, 2023 Sprenkle - CSCI209 20

(-1, -1) x

y

(1, 1)

(1, -1)

(-1, 1)

For all x:
 For all y:
 pixels[x][y] = expression.evaluate(x, y)

Consider evaluating expression as
f(x, y) = expression

at various points in the image

Example: expression is x+y

Resulting Image for x+y

Nov 13, 2023 Sprenkle - CSCI209 21

[-2, -2, -2]
à [-1, -1, -1]

[2, 2, 2]
à [1, 1, 1]

[0, 0, 0]

[0, 0, 0]

[0, 0, 0]

• Recall that color range is
clamped to range [-1, 1]
• Green outline for framing

purposes only

x

y

Generating Images from Expressions

Nov 13, 2023 Sprenkle - CSCI209 22

(-1, -1) x

y

(1, 1)

(1, -1)

(-1, 1)

For all x:
 For all y:
 pixels[x][y] = expression.evaluate(x, y)

Consider evaluating expression as
f(x, y) = expression

at various points in the image

What is the resulting image if the expression is
• [-1, 1, -1] ?
• x ?
• x*y ?

Generated Images from Expressions

Nov 13, 2023 Sprenkle - CSCI209 23

For all x:
 For all y:
 pixels[x][y] = expression.evaluate(x, y)

[-1, 1, -1] x x*y

PROCESSING PROGRAMMING LANGUAGES

Nov 13, 2023 Sprenkle - CSCI209 24

Programming Language Syntax & Semantics
•What does an assignment statement look like in

Java?
ØWhat can be on the left hand side?

•What are the rules for an identifier in Java?

ØWhat can be on the right hand side?

•What does a multiplication expression look like?
•How do we evaluate arithmetic expressions?

Nov 13, 2023 Sprenkle - CSCI209 25

Programming Language Design
•Must be unambiguous
ØProgramming Language defines a syntax and
semantics

•Interpreting programming languages
1. Parse program into tokens
2. Verify that tokens are in a valid form
3. Generate executable code
4. Execute code

Nov 13, 2023 Sprenkle - CSCI209 26

Parsing into Tokens
•Example: x = 4*3; à

•Example: x = * 3 5;

•Tokenizer doesn’t care if statement is not valid
Øhandled in next step

•Error example: 1x = 4**3;
Ø1x and ** are not valid tokens in Java

Nov 13, 2023 Sprenkle - CSCI209 27

<id> <assignment> <num> <mult> <num> <endofstmt>

<id> <assignment> <mult> <num> <num> <endofstmt>

Process of Understanding Code:
Building Your Mental Model
•Apply spiral model to understanding code
•Review problem specification (low-cost effort)
•Explore project at the top-level (low-cost effort)
ØLook at packages, class names
ØDon’t take a deep-dive until you have the bigger

picture

Nov 13, 2023 Sprenkle - CSCI209 28

https://cs.wlu.edu/~sprenkles/cs209/projects/picasso/doc/

Interpreting the Picasso Language

Nov 13, 2023 Sprenkle - CSCI209 29

Lexical
Analyzer

Semantic
Analyzer

Error

Error

Expression
Tree

Interpreter

Picasso
Expression

TokenTokenTokens

OR

OR

Evaluation of
expression

Draw on
canvas

Interpreting the Picasso Language

Nov 13, 2023 Sprenkle - CSCI209 30

Lexical
Analyzer

Semantic
Analyzer

Error

Error

Expression
Tree

Interpreter

Picasso
Expression

TokenTokenTokens

OR

Mult

X Y
OR

Evaluation of
expression

Draw on
canvas

x*y

<id:x>
<mult>
<id:y>

What We Need to Do/Represent
•Lexical Analysis

•Semantic Analysis

•Evaluation

Nov 13, 2023 Sprenkle - CSCI209 31

What We Need to Do/Represent
• Lexical Analysis

ØRecognize/create tokens
ØReport errors in creating tokens

• Semantic Analysis
ØConvert infix tokens into postfix

• Report errors
ØParse tokens into expressions (expression tree)

• Report errors
• Evaluation

ØEvaluate expressions

Nov 13, 2023 Sprenkle - CSCI209 32

Understanding the Code
•How would you run Picasso?

•How does the given code map to lexical analysis,
semantic analysis, and evaluation components?
ØLook for packages, classes that map to these steps

Nov 13, 2023 Sprenkle - CSCI209 33

Process of Understanding Code:
Building Your Mental Model
•Look for important words/terms from problem

domain
•Look for terms from design patterns
•Put code in black boxes or group code together

Nov 13, 2023 Sprenkle - CSCI209 34

Process of Understanding Code:
Building Your Mental Model
• After you have the big picture, look at most important classes
• Decide: Does this class merit a closer look? Or do I just need the big

picture of what it does?
Ø Lean towards the latter towards the beginning
Ø Look for class hierarchy and focus on parent/base classes

• Iterate!
Ø Grow your mental model
Ø What a “closer look” means changes over time

• Early: what public methods does the class have? What does the documentation say
they do? What do they return?

• Later: what do these methods do? How does this class interact with other objects?

Nov 13, 2023 Sprenkle - CSCI209 35

Interpreting the Picasso Language

Nov 13, 2023 Sprenkle - CSCI209 36

Lexical
Analyzer

Semantic
Analyzer

Error

Error

Expression
Tree

Interpreter

Picasso
Expression

TokenTokenTokens

OR

OR

Evaluation of
expression

Draw on
canvas

tokens.*

parser.*
expressions.*

Tokenizer, Java’s StreamTokenizer

Understanding the Code: Lexical Analysis
•Process
Øpicasso.parser.Tokenizer
Øpicasso.parser.tokens.TokenFactory

•Output:
Øpicasso.parser.tokens.*

Nov 13, 2023 Sprenkle - CSCI209 37FloorToken

Understanding the Code: Semantic Analysis
•Process
Øpicasso.parser.ExpressionTreeGenerator
Øpicasso.parser.SemanticAnalyzer
Øpicasso.parser.*Analyzer

•Output
Øpicasso.parser.language.expressions.*

Nov 13, 2023 Sprenkle - CSCI209 38
FloorAnalyzer

Understanding the Code: Evaluation
•Process
Øpicasso.parser.language.
ExpressionTreeNode

•Output:
ØRGBColor

•Displayed in PixMap on Canvas
Nov 13, 2023 Sprenkle - CSCI209 39Floor

Understanding the Code: Evaluation
•Key Parent class:
picasso.parser.language.ExpressionTreeNode

•“Old” version of expressions:
ØReferenceForExpressionEvaluations

Nov 13, 2023 Sprenkle - CSCI209 40

public abstract RGBColor evaluate(double x, double y);

TODO
•Project Analysis due Friday

Nov 13, 2023 Sprenkle - CSCI209 41

