Objectives

® Picasso!

Dec 4, 2023 Sprenkle - CSCI209

Review: Typical Trajectory of Projects

Hopefully, you're here!

| getit! | am writing code
and redesigning as necessary
| am confident enough to write a little code

| am starting to get it.
| have the mental model for the code base

Understanding/confidence

This code is too complex!
| can’t understand this/do this project!

Time committed to project
Preliminary deadline retrospective
(starting early, testing) Sprenkle -C5C1209

Review

1. What is a design pattern?

What design patterns have we discussed?
® What problems do they solve?

What design patterns are used in the Picasso project?
® (This could vary by team)

ny do we need to convert the input to postfix?

. W
. What is our git workflow?
. What is a merge conflict? How do you resolve it?

> WN

Dec 4, 2023 Sprenkle - CSCI209

Review: Design Pattern

General reusable solution to a commonly
occurring problem in software design

® Not a finished design that can be transformed
directly into code

® Description or template for how to solve a problem
that can be used in many different situations

“Experience reuse”, rather than code reuse

Dec 4, 2023 Sprenkle - CSCI209 4

Design Pattern: Strategy
® Defines a family of algorithms, encapsulates each
one, and makes them interchangeable

® Allows algorithm/behavior to vary independently
of clients that use it

Allows behavior changes at runtime
® Design Principle:

Favor composition over inheritance

|||||||||||||||||

Merge Conflict

® Occurs when competing changes to the same
lines in a file

Git doesn’t know how to resolve the merge

® Resolving: manually edit the conflicted file to
what you want to keep in the merge

Stage change, commit and explain your fix
Push branch

SSSSS kle - CSCI209

Draw the Stacks
® X+y

e x+floor(y)*x

® (x+floor(y))*x

SSSSSSSSSSSSSSSS

PICASSO

Dec 4, 2023 Sprenkle - CSCI209

Towards Intermediate Deliverable

® Set up to report errors to users

Currently: in the printed output but users aren’t going to see
that

Helpful errors = translated for users
® Opening a file that contains an expression

® Handling new operations
Order of operations
Assignment statement

® Functions with multiple arguments, image names
® Extensions

Dec 4, 2023 Sprenkle - CSCI209

Hints

® Check out the FAQ

® Create unit tests, when possible/appropriate

Run using coverage tool to see what is (and isn’t)
covered.

® Draw things (e.g., stacks, trees) out on paper
® Trace through the code

|||||||||||||||||

Project Goals

® Everyone contributes significantly to the project

Has at least one part where they can say “l made
this!”

® Everyone understands the code and its design
All of it. Well, 90% of it, at least at a high level

® Everyone feels valued as a team member

Contributing to the Team

® Always some concern that your grade is based on
lines of code written

Not all lines of code are equal

Number of lines of code is not a good indicator of
work or quality of code

®\/ariety of opportunities to contribute to the
team

SSSSS kle - CSCI209

Tip: Comparing Binary Operators

¢ Likely need to implement the equals method in
various classes (e.g., Addition, Subtraction, ...)

® Stop after you’ve written two

® Compare the methods
Is there a code smell? Refactor!

|||||||||||||||||

Tip: Error Handling

® Don’t do too much translation too soon

® Can mask your programming errors (that aren’t
USer error errors)

Dec 4, 2023 Sprenkle - CSCI209

14

Final Implementation: Documentation

®*You leave, I'm still here, trying to use [grade] your
code

® Documentation
Extensions aren’t always obvious
State in README

® Javadocs: Purpose of Java classes
Update comments

Auto-generated daily
Can be seen on the project web site

Dec 4, 2023 Sprenkle - CSCI209

15

Deliverables: Tagging

¢ \While given code had compiler errors because of
using test-driven development, there should be
no compilation errors in deliverables’ tagged

versions

None for final version

For others, okay if you have clearly marked test
classes for test-driven development

Dec 4, 2023 Sprenkle - CSCI209 16

Secondary Goals

®You're going to figure out that your final design
isn’t perfect—maybe not even good!

Fix more critical and/or smaller things

® Refactoring!

Note larger things
® analysis/post-mortem due at end of finals week

Good judgment comes from experience.
How do you get experience?
Bad judgment works every time.

Dec 4, 2023 17

Final Project: Project Analysis - Individual

® Understand teammates’ design/code/parts
At least at a high level

® Contents: Description, Planning, Status, Code
Analysis, Collaboration, Future Work

Complete specification online

SSSSSSSSSSSSSSSS

Project Planning

® Review project specifications
® Make sure you know what tasks are left

Intermediate deadline provides some direction, but
there are a variety of other tasks that can be
implemented.

®Be agile!

Dec 4, 2023 Sprenkle - CSCI209

19

Looking Ahead

¢ \Wednesday: Course Retrospective
® Friday: Intermediate Deadline, Demo

® Finals Week

Thursday: Final Implementation Deadline
Friday - noon: Final Analysis

