
595

Chapter Sixteen

Object-Oriented Software
Development

Inheritance and Polymorphism

Summing Up
The previous chapter introduced dynamic memory allocation and a linked list. The
notions of indirection and dynamic memory allocation, introduced in the preceding
two chapters, will be used in this chapter to store a collection of dissimilar elements.

Coming Up
This chapter uses a team-based approach to introduce the two other major features
of the object-oriented paradigm:

* inheritance: the ability to derive a new class from an existing class
* polymorphism: the ability of different types of objects to respond to the

same message in different ways
A case study presents another object-oriented approach to software development.
Along the way, the team discovers a class hierarchy that provides experience with
inheritance, polymorphism, and heterogeneous collections. After studying this chapter,
you will be able to

* recognize generalization that may be implemented with inheritance
* derive new classes from old ones
* override member functions and add new features to derived classes
* apply object-oriented design heuristics for inheritance
* understand and use polymorphism

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

596

16.1 Discovery of Inheritance
through Generalization

This section provides another case study in object-oriented software development.
This time the problem is from the domain of a college library system. It follows the
same methodology presented with the Chapter 12 cashless jukebox case study. This
problem is very similar to a problem described in Nancy Wilkinson’s book Using
CRC Cards [Wilkinson 95]. Related items such as a library class hierarchy, inherit-
ance, polymorphism, a date class, and a data structure capable of storing different
classes of objects are described in Problem Solving and Program Implementation
[Mercer 91].

THE PROBLEM STATEMENT: College library application

The college library has requested a system that supports a small set of library opera-

tions: students borrowing items, returning borrowed items, and paying fees. Late fees

and due dates have been established at the following rates:

Late Fee Borrowing Period

Book: $0.50 per day 14 days

Videotape: $5.00 one day late plus $1.50 for each 2 days

additional day late

CD-ROM: $2.50 per day 7 days

A student with more than seven borrowed items, any one late item, or late fees greater

than $25.00 may not borrow anything new.

Object-oriented software development attempts to model a real-world system
as a collection of interacting objects—each with its own set of responsibilities. This
helps organize the system into workable pieces. The three-step object-oriented soft-
ware development strategy introduced in Chapter 12 is repeated here for your con-
venience:

1. Identify classes that model (shape) the system as a natural and sensible
set of abstractions.

2. Determine the purpose, or main responsibility, of each class. The respon-
sibilities of a class are what an instance of the class must be able to do

597

16.1 DISCOVERY OF INHERITANCE THROUGH GENERALIZATION

(member functions) and what each object must know about itself (data
members).

3. Determine the helper classes for each. To help complete its responsibil-
ity, a class typically delegates responsibility to one or more other objects.
These are called helper classes.

The team consists of the library domain expert, Deena, and five students who are
analyzing the college library system as part of a computer science honors option:
Jessica, Jason, Steve, Matt, and Misty. Austen is the object expert this time.

16.1.1 Identify the Classes
The team now has some experience with object-oriented software development. They
plan to use their experience. The first goal, or deliverable, is a set of potential classes
that model the problem statement. Each class will describe its major responsibility.
The team starts by writing down all the nouns and noun phrases in the problem
statement, redundant entries not recorded.

NOUNS (FROM THE PROBLEM STATEMENT)

college library system library operations CD-ROM

librarian student item seven borrowed books

fee book videotape

late fee day due date

The following list represents the set of potential classes for modeling a solution:

POTENTIAL CLASSES: A first pass at finding key abstractions

Somewhat Sure Not Sure

librarian system

student operations

book late fees

video due date

CD-ROM day

seven borrowed books fine

college library

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

598

Matt recommends keeping librarian as the name for a class responsible for
coordinating the activities of checking books in and out.

A student class will be a useful key abstraction. After all, students will be check-
ing books out, checking them in, and paying fines. The domain expert, Deena, men-
tions that librarian should also be allowed to lend books to faculty, staff, and other
members of the community. After all, it’s a state university paid for in part by state
taxes. So the team decides to change the class name to borrower to reflect the gen-
eral notion of someone who can borrow a book from the library.

Misty doesn’t believe “seven borrowed books” should be a key abstraction. One
of the programmers on the team chimes in and suggests, “This is not a problem. I
can see this as a bag of book objects.” The domain expert Deena remarks, “A book
bag?—cool.” Since the team is currently looking for classes that help observers un-
derstand what the system does rather then how the system will eventually do it, the
team decides that “seven borrowed books” is not a class. Instead, this is a knowledge
responsibility.

Austen uses some object-speak: “A borrower should know its own collection of
borrowed books.” Matt jumps in and asks Austen, “Aren’t CD-ROMs and videotapes
in the same category? They can be borrowed too!” Deena agrees. Austen states that
Matt has implicitly discovered a basic concept of object-oriented analysis. Some classes
have things in common. In this case, there are several categories of things that can
be borrowed: books, CD-ROMs, and videotapes. The team considers the responsibili-
ties these classes have in common. After some discussion, Jason and Jessica produce
the following list of responsibilities that all three classes of objects have in common.
Each book, cdRom, and video should:

* know its due date
* compute its due date
* determine its late fee
* know its borrower
* check itself out
* check itself in

Self-Check
16-1 Which responsibilities are the same for these three classes?

16-2 Which responsibilities should be carried out differently?

Jason notices that the term “borrowable item” has been floating around. Austen
suggests there could be an abstraction named borrowableItem that supplies the

599

attributes and behavior common to all items that could be borrowed from the li-
brary. Although differences exist in the computation of late fees and the setting of
due dates, each borrowableItem has several common responsibilities. Steve com-
plains that borrowableItem is a bit of a tongue-twister. Matt suggests lendable:
“lendable represents things that are, well, lendable.” Deena likes this new name.
lendable it is.

Austen points out that the team has intuitively discovered the inheritance rela-
tionship between classes. Inheritance is another name for generalization. Matt in-
stinctively saw several seemingly different objects and found some common things.
He generalized. Since no one has seen or heard of the inheritance relationship, Austen
draws the following diagram on the chalkboard:

FIGURE 16.1. The inheritance relationship in UML notation (lendable is the abstract class)

cdRombook video

lendable

Austen explains that the C++ culture would refer to lendable as the base class.
The other three classes—book, cdRom, and video—are known as derived classes.
The member functions and data members common to all lendables should be listed
in the base class (lendable). Through inheritance, each derived class (book, cdRom,
and video) inherits member functions from the base class (lendable). Austen then
displays a design heuristic in order to explicitly encourage the team to accept the
inheritance relationship between classes as good design.

OBJECT-ORIENTED DESIGN HEURISTIC 16.1 (RIEL’S 5.10)

If two or more classes have common data and behavior, then those classes should inherit

from a common base class that captures those data and methods.

The common data and operations include:
* a date for knowing the borrower and the due date
* operations such as check self out and check self in

However, without some difference amongst the derived classes, there is no reason to
use the inheritance relationship. Instead, there should be just one class. So, in addi-

16.1 DISCOVERY OF INHERITANCE THROUGH GENERALIZATION

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

600

tion to commonalities as mentioned above, there must be enough differences to jus-
tify having more than one class. There are two, possibly three, major differences
between the three classes:

1. computation of the due dates

2. computation of late fees

3. different attributes (video has a movie-studio attribute, for example)

Jason is confused and questions Austen. Jason doesn’t understand why there is
a lendable class in the library system. Austen decides it might prove useful if he
explained the difference between an abstract class and a concrete class. An abstract
class describes the data and operations meant to be common to all derived classes.
An abstract class cannot be instantiated. Therefore, this code should be rendered
illegal:

lendable aLendable; // ERROR--attempt to construct abstract class

Abstract classes exist to capture common operations and data. They are not to be
constructed.

A concrete class is one that can be instantiated. Therefore, these constructions
must be legal:

book aBook; // To be implemented later
cdRom aCDROM;
video aVideo;

Self-Check
16-3 List the abstract class in the following account hierarchy:

basicChecking checkingWithLoan

account

16-4 List the concrete class(es) in this inheritance hierarchy.

16-5 List an operation that would make one class different from another.

16-6 List one operation that would be the same for the concrete classes.

601

16-7 List one data member that both derived classes would likely have.

16-8 List one data member that would exist in one class, but not in the
other.

Jessica claims to understand the notion of the inheritance relationship, although
the implementation is not in her head yet. Austen remarks, “I could show you how
all this works, but don’t worry about it for now. I’ll show the implementation details
in a bit.” Matt articulates that the team should get back on task with analyzing the
college library system.

Jason reminds the group that the following classes have been identified so far:
* librarian
* borrower
* lendable (and the derived classes: book, cdRom, and video)
With some consensus realized, Steve wants to know what the user interface will

look like. Will there be text-based input and output communication between the
user and the system? Is a graphical user interface desired? What about a card reader
or touchscreen for input? Steve enjoyed the touchscreen ordering system recently
tested at the local Taco Bell. Misty points out that it has since been removed.
Deena, the domain expert, isn’t sure what the interface should look like. She be-
lieves the library will be okay with a text-based interface to the system. Text-based
input and output are acceptable. Matt draws a picture so everyone can understand
the relationship between a user and librarian:

FIGURE 16.2

librarian
user: I'm borrower #1234.

I want to borrow book
A76.73.C153M46.

Steve wonders whether user should be included as one of the classes to model
the problem. Misty reminds Steve that the user is a person who approaches librar-
ian, shows identification, and makes a request. borrower represents an object in-
side the system that knows everything about that user that the system will need to
know. For example, borrower could also be responsible for knowing if its human

16.1 DISCOVERY OF INHERITANCE THROUGH GENERALIZATION

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

602

counterpart (the user) owes any late fees. User is not going to be a class. However, it
could play a part in the scenarios. Austen confirms that this is a good decision. Matt
lets Austen in on a little secret: “We went through this once before with the cashless
jukebox that’s jammin’ in the student center.”

Deena has a problem with the concept of a book class and a borrower class.
Certainly the system must maintain many borrowers and many books. Matt relates,
“One class can create many instances, or objects. Since there will be many lendables
and many borrowers, we should probably add two new classes named borrowerList
and lendableList to store, retrieve, and delete borrowers and lendables, respec-
tively.” The team agrees. It worked for the jukebox.

The team feels as though they have captured several key abstractions (classes)
for this application. They now have a framework for analyzing the problem in more
detail. There is a sense that the primary responsibility of each class has been recog-
nized. The team documents their progress with a table that lists class names along
with their primary responsibilities.

Class Name Primary Responsibility

librarian Represent object responsible for coordinating activities of checking books in and out.

borrower Represent one instance of someone who can borrow a lendable. There may be

thousands of borrowers.

lendable Represent an abstract class from which many “borrowable” items can be derived. This

abstract class captures the common member functions and data members of any item

that can be borrowed from the college library.

book Represent one book that can be checked in and checked out. There may be thousands

of books.

cdRom Represent one CD-ROM that can be checked in and checked out. There may be

thousands of cdRoms stored in the database.

video Represent one videotape that can be checked in and checked out. There may be

thousands of videos.

borrowerList Retrieve, delete, add, or update any borrower from the thousands of borrowers in

the database of valid borrowers.

lendableList Retrieve, delete, add, or update any lendable from thousands of “borrowable” items.

This following picture provides an abstract view of the system so far. It also
marks the boundaries of the system. Everything in gray is in the system under

603

development. The users and physical items that can be borrowed are outside the
system.

FIGURE 16.3

Users

Lendables

librarian
borrowerList

borrower

lendableList

Coordinates
activities Stores valid borrowers

Stores all books, cdRoms, and videos

book cdRom video

lendable

16.2 Refinement of Responsibilities
With primary responsibilities identified, the team now sets about the task of identi-
fying and refining other responsibilities. The team will also identify helpers—the
other classes needed to carry out a specific responsibility. The team will try to an-
swer questions such as: What are the responsibilities? Which class should take on
each of the responsibilities? and What class(es) help accomplish another class’s re-
sponsibility? Responsibilities convey the purpose of a class and its role in the sys-
tem. Analysis is enhanced when the team thinks that each instance of a class will be
responsible for two things:

1. the knowledge each object of the class must maintain

2. the actions each object of the class can perform

Austen recommends that the team to be prepared to ask the following two ques-
tions:

1. What should an object of the class know about itself (knowledge)?

2. What should an object of the class be able to do (actions)?

16.2 REFINEMENT OF RESPONSIBILITIES

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

604

Assigning a responsibility to a class means that every instance of that class will
have that responsibility. This is true when there are many instances of the class—
as in lendables and borrowers. It is also true when there is only one instance of the
class—such as librarian and lendableList.

The next team activity involves assigning more specific responsibilities to the
classes already identified. One technique involves role playing. Each team member
assumes the role of one of the classes. The team members play out scenarios while
adding responsibilities and helpers to CRH cards.

16.2.1 A “User Cannot Borrow” Scenario
At this point, team members assume the roles of the classes. They plan to try sce-
narios to see how one instance of a class interacts with other objects. A scenario is
the answer to the question What happens when . . . ? The team decides the first
scenario will be the response to this question:

16.2.1.1 Scenario 1: “What happens when user #1234 wants to check out a book and
currently has seven borrowed lendables?”

librarian: Well, I’m the librarian so I guess I’ll start. I just got a user ID. It’s #1234.
Now User, what do you want to do?

User: I want to check out a book.

librarian: Now I need to know the call number of the book.

User: The book’s call number is QA76.1.

librarian: Okay, now let me verify that this user can borrow. I’ll ask borrowerList
to look up the borrower with ID #1234.

borrowerList: I found the borrower you asked for. I’m sending it back to you. I’ll add
getBorrower to my responsibility list. I must know all borrowers.

librarian: Thanks, borrowerList. Now I have the software object that represents
the human user. I believe my job will be easier if I can send borrower a canBorrow
message. I am now helping borrower. What about it, current borrower, can you
borrow a new book?

borrower: Since I am responsible for knowing my borrowed lendables, I should be
able to tell you if I have seven or more things checked out. Hey wait a minute,
you didn’t ask me if I had seven borrowed items. You asked me if I could borrow.
So I am going to add a canBorrow responsibility to my list. I will return a code
indicating that I can borrow. Will false or true do? To borrow, my late fine must

605

be $25.00 or less and I must have fewer than seven borrowed items, none of
which can be overdue. It seems like I’ll need to know my own borrowed lendables.
I have seven borrowed items. No, I cannot borrow.

librarian: Thanks, borrower. Things are made easier for me because I can delegate
the canBorrow responsibility to you. Also, remember when we were working on
the jukebox. Chelsea told us that we should try to distribute system intelligence
as evenly as possible. We had a canSelect message to simplify the jukebox.
Now, I can just send a canBorrow message to you. I think I now must send an
appropriate message to the user that borrowing a book is not an option.

The team decides they have run this particular scenario to its logical conclu-
sion. They also feel that there are obviously many possible scenarios to role play
such as successfully checking out a book and returning a lendable. The team also
wonders if users should be able to look up a book by call number to see if it is in or
out. Perhaps a user might want to know when a book is due back in the library. This
suggests that a lendable should know when it is due and it should be able to tell
someone the actual due date.

Deena confirms that this is certainly desirable behavior. However, the problem
specification does not list these requirements. The team agrees to plan for the possi-
bility of adding such enhancements later.

16.2.2 A Check-Out Scenario
16.2.2.1 Scenario 2: “What happens when user #1234 wants to borrow a lendable

with call number QA76.2, has three books out, none of which are late, and has
late fines of only $5.00?”

librarian: I’ll start again; I’ll get the user ID.

User: My ID is #1234.

librarian: Let me ask borrowerList for the proper borrower. Please getBorrower
with ID #1234.

borrowerList: I found the borrower you asked for. I’m sending it back to you.

librarian: User, what do you want to do?

User: I want to borrow something with call number QA76.2.

librarian: Now I have the current borrower and the current lendable in my pos-
session. I think I’ll check with borrower: can you borrow?

16.2 REFINEMENT OF RESPONSIBILITIES

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

606

borrower: Let me see if I have fewer than seven borrowed items. Yes, I currently am
borrowing three lendables. Now, are any lendables overdue? Let me ask the
first lendable in my list of borrowed items: lendableo, are you overdue?

lendable0: I am responsible for knowing if I am overdue. I’ll have to ask date to
compare my due date with today’s date. I will add the responsibilities “know
due date” and isOverdue. I asked date for help.

“Who’s date?” asks Deena. She wants to know what a date class would be re-
sponsible for. The team decides to add date as a key abstraction and see what its
responsibilities are. One of the programmers writes down date as a helper on a CRH
card and agrees to play the role of date.

date: To compare the due date with today’s date, I must be able to get today’s date
and to compare two dates. Yes lendable0, today’s date is less than or equal to
the due date. I’ll add <= and todaysDate to my responsibilities.

lendable0: Thanks, date. I am not overdue.

borrower: I’ll check my other lendables. lendable1, lendable2? None are overdue.
Since I also have no late fees, I can tell librarian, “Yes, I can borrow something
new.”

librarian: lendableList, please get me the lendable QA76.2.

lendableList: Okay, here is the lendable.

librarian: What should I do now?

The team pauses and considers a couple of possibilities. It seems as if the current
borrower and the current lendable both need to be updated somehow to record that
the lendable has been checked out. It seems logical to update the lendable first and
then send it to the borrower to add to its list of lendables. It also seems appropriate to
update lendableList and borrowerList. That ensures that all borrowers and lendables
are accurately updated.

Austen recommends that the team first ask the question, What should be done
to update lendable? The team decides that the book’s status should become “not
available.” Also, lendable’s dueDate should be set to the appropriate day in the
future so later on the borrower can ask the book if it is overdue. The team also
believes that it is important to know who has borrowed the lendable—in case some-
one wants to find out who has it. The team comes up with two alternatives.

607

The first alternative places the responsibility of updating a lendable upon
librarian. The second alternative delegates this responsibility to the lendable
itself. The team decides to role play both alternatives. Here is the first.

16.2.2.2 Alternative 1 (updating the lendable)

librarian: lendable, compute and set your due date.

lendable: Okay, I’ll setDueDate to either 2, 7, or 14 days from today—depending on
what class of lendable is currently being checked out.

Austen breaks in saying, “That’s polymorphism!” The class can be determined
while the program is running. The particular version of setDueDate will depend on
the class of the object. And the class of object cannot be determined until the mo-
ment the lendable is being checked out—at runtime.

lendable: I’ll set the due date. I’ll add a computeDueDate responsibility to my CRH
card.

librarian: lendable, now please record #1234 as your borrower.

lendable: Okay, I’ll set my borrower ID as user #1234.

librarian: Okay, now mark yourself as not available.

lendable: Done.

16.2.2.3 Alternative 2 (updating the lendable)

librarian: lendable, you could be responsible for checking yourself out. If I tell you
who the borrower is, could you check yourself out?

lendable: Sure. I add these new responsibilities to my CRH card: computeDueDate
and checkSelfOut.

Which alternative is better? One way to assess the design is to ask yourself
what feels better. Alternative 2 feels better somehow. But wouldn’t it be nice to have
some design heuristics to make us feel better about feeling better? Well, it turns out
that the first alternative has a higher degree of coupling. There were three different
message sends versus the single message send of the second alternative. Addition-
ally, the second alternative has better cohesion—the three responsibilities of lendable
accomplished by a lendable::checkSelfOut message are closely related.

16.2 REFINEMENT OF RESPONSIBILITIES

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

608

1. Know my borrower.

2. Compute my due date and set my due date.

3. Update my availability status.

Additionally, the first alternative requires librarian to know more than is neces-
sary about the internal state of the lendable. Alternative 2 delegates responsibility
to the more appropriate class. So the team member holding the lendable card adds
lendable::checkSelfOut(borrower) to the set of responsibilities on the CRH card.

Now, has this scenario reached its logical conclusion? No. The borrower does not
know about its new borrowed book. Remember that it is the responsibility of each
borrower to know its borrowed books. The borrower must be updated. Here is one
conclusion to this scenario.

librarian: borrower, let’s follow the design heuristic we just talked about. I’ll just
send this message: borrower.checkOut(lendable)

borrower: It seems as though I should be able to add a lendable to my list of bor-
rowed lendables. I’ll add borrower::checkOut(lendable) as a responsibility
on my CRH card.

librarian: Please inform the user that everything is okay—the user may take the
lendable along. Whoops, I almost forgot. I better update borrowerList and
lendableList. borrowerList, please put this borrower away.

borrowerList: Okay, I’ll add putBorrower(borrower) to my CRH card.

librarian: lendableList, please but this lendable away.

lendableList: Okay, I’ll add lendableList::putLendable(lendable) to my CRH
card.

librarian: So User, anything else?

User: No, I’m outta here.

librarian: Okay, I’m ready to process another user.

The check-out scenario has reached a logical conclusion.

Self-Check
16-9 Write a check-out algorithm that sends any message you desire to

any object you desire. Use any of the objects shown next as if the
classes were already implemented. Add any message you like.

609

Remember you are designing now. You will be passing off your CRH
cards and the check-out algorithm to another programmer who will
have to make it all work according to your design.

borrowerList theBorrowerList;
lendableList theLendableList;
borrower currentBorrower;
lendable currentLendable;

16.2.3 A Check-In Scenario
The team knows that there are many scenarios that should be played out. Deena
wants to know:

16.2.3.1 Scenario 3: “What happens when a user returns a book that is not overdue?”

librarian: I’ll start again; I’ll get the user ID.

User: My ID is #1234.

librarian: Let me ask borrowerList for the proper borrower. Please getBorrower
with ID #1234.

borrowerList: I found the borrower you asked for. I’m sending it back to you.

librarian: User, what do you want to do?

User: I want to return something with call number QA76.2.

librarian: User #1234 wants to return a lendable with call number QA76.2. Seems
like I need checkIn on my CRH card. Before I just thought I had to check things
out. Now I know I must do both. I’ll make sure I have both checkIn and checkOut
on my CRH card. Let me get the current state of this borrower and lendable
from their respective lists. First, get me the borrower with ID #1234.

borrowerList: Okay, here is the borrower.

librarian: lendableList.getLendable(QA76.2). Wait, maybe I’ll just get it from
the borrower. No, in fact, I want my life to be easy. borrower, please
checkIn(QA76.2).

borrower: Okay, let’s see if I can do that. I am currently borrowing that lendable. So
lendable, are you overdue?

lendable: No.

16.2 REFINEMENT OF RESPONSIBILITIES

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

610

borrower: Okay, I’ll just remove you from my borrowed list. If you were overdue, I’d
probably have to adjust my late fees. I’ve been updated. Back to you, librarian.

librarian: I still need to update lendable and lendableList, but first, let me put
you (the borrower) back where you belong so the next time you try to borrow
something, I will get back your current state.

borrowerList: Okay, I think I can handle that, but I will need to know the borrower
you are putting back. My major responsibilities are to know all borrowers and
to allow librarian to get borrowers and put updated borrowers back. I’ll just
replace the current state of the borrower with the updated borrower you send
me. I need this written down so I can see it better and remember it.

Matt designs a first draft of a borrowerList class definition:

Class: borrowerList

Responsibilities:

know all borrowers
getBorrower(borrower)

putBorrower(borrower)

Helpers:

borrower

vector

class borrowerList {
public:
 void getBorrower(borrower);
 void putBorrower(borrower);
private:
 vector <borrower> my_data;
 int my_size;
};

CRH Card Class Definition, First Draft

librarian: Now that the borrower is taken care of, I have to update lendable and
lendableList to reflect the fact that the physical equivalent (a book) has been
returned. So lendable, check yourself out.

lendable: I should be able to do that. Okay, I’ll mark myself as available. I wonder, is
there anything else I should do? Perhaps I could set my due date to today or
perhaps sometime way in the past. What about 1-1-1900? No, that would make
me a century overdue. What about a day in the future, say 9-9-9999. Or I could
set my borrower to something like “?no borrower?” Let me think about it; per-
haps being available is enough. No one should care about borrower or due date
if I am available. Anyway, consider me updated.

librarian : Now I just need to put the book away. I send this message:
lendableList.putLendable(currentLendable);

611

lendableList: Okay, I think I can handle that. I do need to know the lendable. My
major responsibilities are to know all lendables and to allow librarian to get
lendables and put them back. I’ll just replace the current lendable state with
the updated lendable you send me. I need this written down also.

Matt designs a first draft for the lendableList class definition:

16.2 REFINEMENT OF RESPONSIBILITIES

CRH Card Class Definition, First Draft

Class: lendableList

Responsibilities:

know all lendables
getLendable(lendableID)

putLendable(lendable)

Helpers:

lendable

vector

class lendableList {
public:
 void getLendable(string lendID);
 void putLendable(lendable);
private:
 vector<lendable> my_data;
 int my_size;
};

librarian: Everything is cool.

This scenario has reached its logical conclusion. Along the way, librarian also
added a few major responsibilities: checkIn and checkOut. Austen claims these two
scenarios might be implemented as private member functions. The team member
role playing librarian feels it is time to review her CRH card. Once again, Matt
designs a first draft of a librarian class definition to better visualize the class.

CRH Card Class Definition, First Draft

Class: librarian

Responsibilities:

coordinate activities
know current borrower and

lendable
checkIn

checkOut

Helpers:

lendable

borrower

lendableList

borrowerList

class librarian {
public:
 void processOneUser();
private:
 borrower currentBorrower;
 lendable currentLendable;
 void checkOut(lendable);
 void checkIn(lendable);
};

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

612

Jessica and Jason are anxious to see what happens when a user returns an
overdue lendable.

16.2.4 A “Return of an Overdue Book” Scenario
16.2.4.1 Scenario 4: “What happens when a user returns a book that is five days over-

due?”

librarian: User #1234 wants to return a lendable with call number QA76.2. So I’ll
execute my checkIn algorithm. The first thing I want to know is if the lendable
is overdue. Who can answer that?

The team debates whether librarian should get the software version of the
borrowed item from the borrower or from lendableList. The lendable should be in
the same state in either location—the lendableList or the borrower’s set of bor-
rowed lendables. Jessica, who is role playing borrower, says, “I know what I have
borrowed and since I may need to register a late fee, why not just ask me?” librarian
would rather do what she did before: “I don’t want to get confused. I’ll get
currentLendable from lendableList and currentBorrower from borrowerList. Then
I can do whatever I need to. When I’m done, I’ll put them both away.”

librarian: lendableList.getLendable(QA76.2).

lendableList: Here is that lendable you seek.

librarian: borrowerList.getBorrower(#1234).

borrowerList: Here is that borrower along with all known borrowed items.

librarian: borrower, checkIn (QA76.2).

borrower: Okay, I do have a record that I am borrowing the lendable with ID QA76.2.
So lendable, are you overdue?

lendable: I’ll ask date. Is dueDate < today’s date?

date: Yes. The dueDate was some time ago. I guess there will be money to owe.

lendable: That’s real clever rhyming, date. Yes borrower, I am overdue.

borrower: I’ll ask lendable to computeLateFee.

lendable: date, how many days overdue? Tell me todaysDate - dueDate.

date: There is a difference of five days. I’ll add “compute number of days between
two dates” to my CRH card.

613

lendable: The late fee is 5 * (per_day_late_fee), which as a book is $2.50.

borrower: Okay, I’m supposed to know my total late fee, so I’ll add that $2.50 to my
late fee. Remember, I’ll be implemented as software to ensure my late fees are
always honest. I’ll write recordLateFee on my CRH card.

“That was an awful lot of action going on to return a book,” moans Steve. “I
think we could simplify things by sending messages like this”:

currentBorrower.checkIn(currentLendable);

Austen explains that this can and actually did happen. It’s just that we observed the
details from the perspective of borrower, lendable, and date. All of these details
could be encapsulated into the checkIn algorithm. librarian simply sends a checkIn
message to the borrower. The borrower gets help from lendable and lendable gets
help from date. The borrower can do everything it needs to do to update itself. This
design means less coupling (fewer message sends from librarian to borrower). “A
better design,” remarks Austen.

borrower: So in summary, when I receive a checkOut message, I’ll adjust my late
fees if necessary; I’ll also remove the lendable from my list of borrowed items.
So I will add checkIn to my CRH card. Might as well add checkOut also. And in
case you ever want to know what my late fees are, I’ll make them accessible
with a lateFee accessor member function. I’m going to follow the trend and
write all this down before I forget. Matt, please design a class definition for me
while you’re at it.

16.2 REFINEMENT OF RESPONSIBILITIES

CRH Card Class Definition, First Draft

Class: borrower

Responsibilities:

know borrowed lendables
recordLateFee

checkIn(lendable)

canBorrow

checkOut(lendable)

double lateFee()

Helpers:

lendable

bag or vector?
librarian

class borrower {
public:
 checkOut(lendable aLendable);
 checkIn(lendable aLendable);
 double lateFee() const;
 bool canBorrow() const;
private:
 double my_fines;
 vector <lendable> my_borrowedItems;
 int my_numberOfBorrowedItems;
};

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

614

librarian: Okay, now that the borrower is updated, put it away:
borrowerList.putBorrower(currentBorrower)

borrowerList: Done. I replaced the old state of the borrower with the updated ver-
sion you just sent me.

librarian: Now I have to deal with the lendable. Say lendable, could you do a
checkOut also?

lendable: Let me see, I’ll mark myself as available, set my due date to a special date
way in the future, and then set my borrower to some special value also. I’ll call
this algorithm lendable::checkSelfOut to distinguish it from
borrower::checkOut. I have a lot to remember. Let me review my CRH card too.

Matt says, “Sure, I’ll sketch a design of the class definition.”

CRH Card Class Definition, First Draft

Class: lendable

Responsibilities:

know due date
know borrower

computeLateFee

computeDueDate

setDueDatecheckSelfIn

isOverdue

isAvailable

checkSelfOut(borrower)

Helpers:

date

class lendable {
public:
 void checkSelfIn();
 void checkSelfOut(borrower);
 bool isOverdue() const;
 bool isAvailable() const;

private:
 date my_dueDate;
 string my_borrowersID;
};

librarian: lendableList, please put away this updated lendable.

lendableList: I’ll replace my current but outdated version of lendable with the
updated version you just sent me.

librarian: We’re done. I can now get another user request or get the next user.

Austen congratulates the team. So far, there is a reasonable set of classes with
clearly defined responsibilities. Austen remarks, “The design feels right. Whether
you knew it or not, you were actually using many of the object-oriented design heu-
ristics. Even if you weren’t thinking of them. Also notice that the first selection of
classes held up.”

615

FIGURE 16.4

Users

Lendables

librarian
borrowerList

borrower

lendableList

Coordinates
activities Stores valid borrowers

Stores all books, cdRoms, and videos

book cdRom videodate

lendable

There are a few new lines of helpers. librarian gets help not only from two lists
but now also from individual instances of borrower and lendable—
borrower::checkIn and lendable::checkSelfIn, for example.

The new class is date. In some ways, date is like classes such as string and
vector. It could be considered a utility like string, double, bool, int, and vec-
tor—ready to serve. The picture above shows only domain-specific classes such as
lendable, librarian, and lendableList. So why is date there? First, the date
class played a role in helping lendable. date is present because the team will
certainly have to do something about a date class during design and implementa-
tion. Here is the current state of date’s CRH card to remind the team of some of
the things a date object should be able to do. Matt says he will not design a class
definition for date until he checks with his teacher who told him he knew about a
Date class on the Internet that is available for free from a gracious computer sci-
ence professor.

16.2 REFINEMENT OF RESPONSIBILITIES

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

616

Class: date

Responsibilities:
compute number of days between two dates

less than or equal <=

todaysDate

Helpers:

Self-Check
With a team, run the following additional scenarios:

16-10 What happens when a user enters an ID number that is not found
in borrowerList?

16-11 What happens when a user wants to pay a late fee?

16-12 What happens when a user want to check on the availability of a
lendable?

16-13 Write a checkIn algorithm that sends any message you desire to
any object you desire. Use any of the objects shown next as if the
classes were already implemented. Add any message you like.

Remember you are designing now. You will be passing off your CRH
cards and the checkIn algorithm to another programmer who will
have to make it all work according to your design.

borrowerList theBorrowerList;
lendableList theLendableList;
borrower currentBorrower;
lendable currentLendable;

16.3 Design
Now that there is some understanding of the system, the programming team—Charlie
and Matt—turns its focus to designing the class definitions. This programming team
already knows there is a relationship between the responsibilities on the CRH cards
and C++ class definitions. The things that each instance of a class must do could be

617

listed as the public member functions. The things that each instance of the class
must know can become the private data members.

Austen suggests that the team first cope with the new class relationship of
inheritance. The first thing to do is ensure that the lendable class captures all the
knowledge and action responsibilities that will be common to the derived classes.
The CRH card ends up looking like this with an additional mention of the derived
classes that make up the current inheritance hierarchy:

Austen tells the team, “In a short time, you will see action responsibilities in-
herited by the derived classes (book, video, and cdRom) that have the same name,
but execute differently.” For example, each class will computeDueDate, but each class
will do it differently. A book can be borrowed for 14 days but a video for only 2. At the
same time, the base class can define and implement member functions that all de-
rived classes will usefully inherit—checkSelfIn, for example. That behavior is the
same for all derived classes.

16.3.1 The lendable Action Responsibilities
(member functions)

The lendable card currently lists the names of seven possible messages. isOverdue
and isAvailable seem to be the easiest to consider. Neither requires arguments.
Both return either true or false indicating the state of the lendable. The check-out
operation needs to know the borrower, so checkSelfOut requires the borrower’s ID,
which could be a string.

The team next considers the checkSelfIn responsibility. Matt believes the func-
tion needs no arguments. It is a void function. librarian simply sends a checkSelfIn
message and book or video will update itself. This leads to a refined design of the
base lendable.

16.3 DESIGN

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

618

class lendable { // Second draft
public:
 // . . .
 bool isOverdue() const;
 bool isAvailable() const;
 void checkSelfIn();
 void checkSelfOut(string borrowersID);

private:
 // TBA
};

The first four member functions are common to all derived classes and do not
vary between those derived classes. However, the two other responsibilities—
computeDueDate and computeLateFee—have different meanings to the derived classes.
They will be implemented differently for each of the three classes. For example, book
will compute due date differently than video. The late fees also vary amongst all
three classes to be derived from lendable.

Misty wonders if these two operations should be part of the interface. Austen
proposes that it can be decided by answering the question, Who will send the
computeLateFee and computeDueDate messages? Charlie claims the computeLateFee
message might be sent from within the checkSelfIn message. To do that, the object
must also getDueDate. Neither function is part of the public interface. Instead they
are part of the hidden details. And the actual code to do each of these differs amongst
the derived classes.

Austen points out that the public interface should be kept as simple as possible.
There is even a design heuristic for this.

OBJECT-ORIENTED DESIGN HEURISTIC 16.2 (RIEL’S 2.5)

Do not put implementation details into the public interface of a class.

No one outside of the lendable hierarchy has to send a computeLateFee or
computeDueDate message. And it seems safe to assume that no one will send a
computeDueDate or computeLateFee message. One of the objects might want to ask a
lendable for its due date or late fee, but probably no one will directly ask lendable
to compute them. These are implementation details. Therefore these two operations
should not be made public.

“Make them private,” proclaims Matt. “Better to make them protected,” claims
Austen. He goes on to explain that derived classes inherit both public and protected
members. However, protected members are invisible to users. The protected-access

619

mode allows access only to member functions of the base class and to any class
derived from the base class. These protected members will not be accessible to
librarian or anyone else outside the lendable hierarchy. Also, because they do
not change anything (checkSelfOut changes the state, not computeDueDate), they
are declared const. The team now recognizes that two other accessors should have
the const tag.

class lendable { // Third draft
public:
 // . . .
 void checkSelfIn();
 void checkSelfOut(string borrowersID);
 bool isOverdue() const;
 bool isAvailable() const;

protected:
 date computeDueDate() const;
 double computeLateFee() const;

private:
 // TBA
};

Austen points out that these messages will be called from the base class’s
checkSelfIn and checkSelfOut messages. checkSelfOut will send a computeDueDate
message. checkSelfIn will send a computeLateFee message. Jessica wonders, “But
how will lendable::checkSelfIn know which of the three computeDueDate mes-
sages to send?” Matt recommends that the team consider applying multiple selec-
tion.

EXPLICIT CASE ANALYSIS

if (lendableIsBook())
 book::computeDueDate()
else if (lendableIsVideo())
 video::computeDueDate()
else
 cdRom::computeDueDate()

Austen explains that the inheritance relationship is an attempt to avoid such
explicit multiple selection. Otherwise at some later point, when more lendables are
added, the checkSelfOut and checkSelfIn member functions will have to be changed.
Additionally, each derived class would have to carry around some data member value
indicating the class.

16.3 DESIGN

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

620

OBJECT-ORIENTED DESIGN HEURISTIC 16.3

Don’t add a data member that indicates a class’s type. If you have to make a decision

based on different classes of objects, implement an inheritance hierarchy.

This redundancy is not necessary. Each class knows what type it is. It will be
easier to add a few lendables later by planning for them now. “How is this possible?”
asks Matt. “Through polymorphism,” replies Austen.

16.3.2 Polymorphism
Polymorphism makes it possible to have a collection of heterogeneous objects (e.g.,
video, book, and cdRom) that appears to be a container of homogenous objects (e.g., a
lists of lendables). This works because the program can distinguish the class of
objects at runtime. This means a vector could store books, videos, cdRoms, and, as it
turns out, any other class of object derived from the same base class—lendable.

Polymorphism allows the same message to be sent to every object in a container,
even though those objects are instances of different classes. However, the same mes-
sage will activate different member functions. For example, if the current object is a
book, book::computeLateFee will be called. However, if the current object is a CD-
ROM, cdRom::computeLateFee will be called. So imagine a container (vector or
list) that has two books, followed by a video, followed by a cdRom, followed by an-
other book.

Message Class Days Overdue Message Returns

item[0].computeLateFee() book 2 2 * 0.50

item[1].computeLateFee() book 2 2 * 0.50

item[2].computeLateFee() video 2 5.00 + 1 * 1.50

item[3].computeLateFee() cdRom 2 2 * 2.50

item[4].computeLateFee() book 2 2 * 0.50

These five messages call three distinct functions. When the container item is a
book, book::computeLateFee applies the $0.50 per day fine. When the lendable is a
video, video::computeLateFee applies the $5.00 first late day fee plus 1 * the $1.50
additional late day fee. When the container item is a cdRom, cdRom::computeLateFee
applies the $2.50 per day fine.

Matt remarks to Austen, “This is what you meant when you said earlier one
name can have different meanings.” “Yes,” says Austen. “Now how do you get this to
work?” questions Charlie.

621

First, place the common action responsibilities in the base class. That has al-
ready been done. Then identify the responsibilities that have different meanings for
each of the derived classes. In this inheritance hierarchy, they are the following two:

1. computeLateFee

2. computeDueDate

These member functions should be made into pure virtual functions. That means
that every derived class must implement that function in a manner appropriate to
the particular lendable. It also means no programmer can ever instantiate lendable
because it has a pure virtual function. Here is what pure virtual functions look like
in the lendable class.

class lendable { // Fourth draft
public:
 // . . .
 void checkSelfIn();
 void checkSelfOut(string borrowersID);
 bool isOverdue() const;
 bool isAvailable() const;

protected:
 virtual Date computeDueDate() const = 0; // Implement in
 virtual double computeLateFee() const = 0; // derived classes

private:
 // TBA
};

Virtual functions are necessary for implementing polymorphism. Once declared as
virtual in the base class, the runtime system will search for the appropriate func-
tion of that name. Because the runtime system knows the class of object that sent
the message, it can call the proper implementation.

A virtual function implies the implementation will vary amongst the derived
classes. You specify a function as polymorphic by preceding it with the C++ keyword
virtual:

virtual Date computeDueDate() const = 0;
virtual double computeLateFee() const = 0;

The strange ending = 0 specifies the functions as pure virtual.

virtual Date computeDueDate() const = 0;
virtual double computeLateFee() const = 0;

16.3 DESIGN

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

622

Every derived class must implement every pure virtual function in its ancestor.
Errors result when a programmer forgets to implement the function in any one of
the derived classes. So declaring a function pure virtual is an antibugging tech-
nique.

Additionally, it is impossible to instantiate a class that has one or more pure
virtual functions with = 0. This ensures that the class is abstract, rather than con-
crete. The keyword virtual signifies that the implementation will depend on whether
the object is a book, video, or cdRom. And finally, const is added because these two
functions are accessors.

Since Date just showed up again, Matt begins to explain where the Date class
came from. It is the current return type for computeDueDate.

virtual Date computeDueDate() const = 0;

Austen replies that a date class is referred to even though it isn’t implemented yet.
But now we have a Date class as seen in Owen Astrachan’s book A Computer Science
Tapestry [Astrachan 97]. He says, “When I asked Owen if we could use his Date class
to save ourselves a lot of time, he graciously offered to give it to us or to anyone else
who wanted it. We’ll come back to that class definition later. For now I can assure
you that it does everything we need it to do such as compare dates, get the current
date, add days to a date, subtract days from a date, and find the difference between
two dates. I should also tell you that Owen, like many other computer scientists,
likes to capitalize the first letter of his classes—so he named it Date rather than
date.”

Now let us consider the data members we’ll need for all lendables.

16.3.3 The Knowledge Responsibilities (data members)
The team examines the lendable CRH card and notices date is often written as a
helper. computeDueDate returns a Date object, but does lendable need a Date data
member?

Consider that every derived class must maintain its due date. Therefore, this
common knowledge responsibility should be declared in the base class. Austen in-
forms Matt and Charlie that private data members are not inherited by derived
classes. The common solution is to place a due date object in the lendable private
section and then provide an accessor to that data member in the protected: access
mode (this has been done). The fifth draft of the lendable class definition declares
these newest considerations.

623

class lendable { // Fifth draft
public:
//-- modifiers
 void checkSelfIn();
 void checkSelfOut(string borrowersID);

//--accessors
 bool isOverdue() const;
 bool isAvailable() const;
 string lendableID() const;
 Date dueDate() const;

protected:
 virtual Date computeDueDate() const = 0; // Implement in
 virtual double computeLateFee() const = 0; // derived classes

private:
 Date my_dueDate;
 string my_ID;
};

The data member my_ID and an accessor were added because there is a need to
search for lendables. my_ID should make each lendable unique. And now, it appears
that other information about a book’s author or a CD-ROM’s artist or software ven-
dor name should be added later in the derived classes.

So now that the data members are established, the constructors can be consid-
ered. One constructor parameter can be used to initialize my_ID. An accessor to my_ID
should also be added. By reviewing the lendable CRH card, Charlie also noticed the
borrower’s responsibility was still not part of the class definition. Instead of storing
the entire borrower however, it seems as though the borrower’s ID number will
suffice. The availability knowledge responsibility was missing too. And finally, Matt
recalled that someone asked the lendable for its late fee. So that too should be
added as an accessor. The final version of the lendable class summarizes all of the
above considerations.

class lendable {
public:
//--constructors
 lendable(string initID);

//--accessors
 bool isOverdue() const;
 bool isAvailable() const;
 string lendableID() const;

16.3 DESIGN

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

624

 string borrowersID() const;
 double lateFee() const;
 Date dueDate() const;

//--modifiers
 void checkSelfIn();
 void checkSelfOut(string borrowersID);

// Pure virtual functions to be implemented
protected:
 virtual Date computeDueDate() const = 0;
 virtual double computeLateFee() const = 0;

private:
 Date my_dueDate;
 string my_ID;
 bool my_availability;
 string my_borrowersID;
};

Now the lendable member functions must be implemented, all but the pure
virtual functions that is. First, a detail is added that has nothing to do with inherit-
ance.

While testing the classes derived from lendable, it was found that a book and a
video had a dueDate in the future, even after they were returned. Matt and Charlie
decide to establish an “empty” value for a due date. When a lendable gets checked
back in, the due date is set to something in the future, 9-September-9999, to be
precise. Any lendable with this emptyDueDate value cannot be considered overdue.
It also helps to set the borrower to someone other than the user who had already
checked it in—an “empty” borrower. Here are the two global constants:

// Use two special values to indicate irrelevant dueDate and
// borrowersID
const Date emptyDate = Date(9,9,9999);
const string emptyID = "?";

16.3.3.1 The lendable Constructor Has an Initializer List

The following familiar pattern for constructors could be followed to implement the
constructor lendable::lendable.

lendable::lendable(string initID)
{ // Less efficient, and inadequate when this is a derived class
 my_ID = initID;
 my_dueDate = emptyDate;
 my_availability = true;

625

 my_borrowersID = emptyID;
}

However, a different method of initialization must now be employed. Initialization
lists, like the one you are about to see, have been avoided as unnecessary syntax
details. They are introduced now because they are absolutely, positively needed to
implement the derived class’s constructors. Additionally, using initialization lists
makes the program run faster. Here is the initialization list for lendable (not really
necessary in a base class):

EXAMPLE OF INITIALIZATION LIST

lendable::lendable(string initID)
 : my_ID(initID),
 my_dueDate(emptyDate),
 my_availability(true),
 my_borrowersID(emptyID)
{
 // More efficient initialization already occurred
}

An initialization list begins immediately after the function heading with a co-
lon (:) followed by each data member (initial value) pair separated by commas. The
effect of both implementations of lendable::lendable—with four assignments or
one long initialization list—is the same. Both adequately initialize all data mem-
bers of lendable.

Although an initialization list isn’t necessary to implement the base class con-
structor, the initialization list must be used by all derived classes. For only in an
initialization list can the base class constructor be called. Observe the call to
lendable’s constructor here in the book constructor:

book::book(string initID, string initAuthor, string initTitle)
 : lendable (initID), // Call base class constructor

 my_author(initAuthor), // Could have used less efficient
 my_title(initTitle) // assignment
{
 // The initialization list took care of everything. Remember, the
 // lendable constructor was also called to initialize the data
 // members that are common to all derived classes.
}

The highlighted part of the initialization list calls the lendable constructor
with one argument, which in turn, initializes all the other common data members
(see lendable::lendable above).

16.3 DESIGN

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

626

16.3.3.2 The Accessors

The lendable accessors require no additional explanation other than perhaps the
Date member functions that were used. Astrachan’s Date::Absolute function re-
turns a number that can be compared with <= and == as in the first guarded action
that checks to see if the dueDate is equal to the emptyDate.

bool lendable::isOverdue() const
{
 if(my_dueDate.Absolute() == emptyDate.Absolute())
 return false;

 Date today;
 // assert: today stores today's date
 return my_dueDate.Absolute() <= today.Absolute();
}

bool lendable::isAvailable() const
{
 return my_availability;
}

string lendable::lendableID() const
{
 return my_ID;
}

string lendable::borrowersID() const
{
 return my_borrowersID;
}

Date lendable::dueDate() const
{
 return my_dueDate;
}

double lendable::lateFee() const
{
 return computeLateFee();
}

16.3.3.3 The Modifiers

The lendable modifiers show polymorphism in action. A checkSelfOut message
sends a computeDueDate message.

627

void lendable::checkSelfOut(string borrowersID)
{
 my_dueDate = computeDueDate();
 // Polymorphism in action. At runtime, the system will know
 // which computeDueDate implementation to use.
 my_availability = false;
 my_borrowersID = borrowersID;
}

Since there were three computeDueDate functions, which one will get called?
The small lendable hierarchy presents three possibilities: If the lendable is a

book, the system will send a book::computeDueDate message. If the lendable is a
video, the system will send a video::computeDueDate message. And if the lendable
is a CD-ROM, the system will send a cdRom::computeDueDate message. Each of
these three classes implements its own computeDueDate function. Because the
lendable class definition was designed with inheritance in mind, computeDueDate
was declared as a pure virtual function. This forces all derived classes to implement
their own computeDueDate member function.

A checkSelfIn message performs three actions. They are summarized first as
discovered during the scenario and then as the algorithm for lendable::checkSelfIn.

16.3.3.4 From an Earlier Scenario

lendable: Okay, I’ll mark myself as available, set my due date to a special date that
is not a valid due date, and then set my borrower to some special value also.

void lendable::checkSelfIn()
{
 my_availability = true;
 my_borrowersID = emptyID;
 my_dueDate = emptyDate;
}

The algorithms for the checkSelfIn and checkSelfOut messages are the same for
any derived class with one exception. During checkSelfOut, the computeDueDate
message will call one of three different operations; it all depends on the sender’s
class.

my_dueDate = this->computeDueDate();
// Call either 1. book::computeDueDate
// or 2. video::computeDueDate
// or 3. cdRom::computeDueDate

If a fourth class gets added to the lendable hierarchy (artWork, for example) by
inheriting from lendable, it too will have to implement a computeDueDate member

16.3 DESIGN

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

628

function (artWork::computeDueDate, for example). Let’s now look at how inherit-
ance gets done in C++.

16.4 The Derived Classes
The general form for deriving one class from another is a class definition with the
base class listed after the derived class name and a colon (:) to indicate inheritance.

GENERAL FORM 16.1. Defining a derived class

class derived-class-name : public ancestor-class-name {

public:

 new-function-heading-1 ;

 overridden-function-heading -1 ;

 new-function-heading-2 ;

 overridden-function-heading -2 ;

private:

 additional-data-members

};

The colon (:) followed by public could be read as “inherits public and protected
things from.” The ancestor’s public and protected member functions are passed on to
derived classes (the descendants). The derived-class inherits the operations of the
ancestor. Member functions and data members can be added to the derived class.
Finally, the ancestor-class member functions can be overridden (given new mean-
ing).

For example, the book class adds a constructor, book, and it overrides the
computeDueDate and computeLateFee member functions. book also adds two private
data members, my_author and my_title, and accessors to this data.

class book : public lendable {
public:
// A new constructor
 book(string initID, string initAuthor, string initTitle);

// The two virtual functions that must be implemented by all
// derived classes
 Date computeDueDate() const;
 double computeLateFee() const;

629

// Additional accessors
 string author();
 string title();

private:
// Additional data members
 string my_author;
 string my_title;
};

The video class also adds a constructor, overrides computeDueDate and
computeLateFee, and adds one private data member.

class video : public lendable {
public:
// A new constructor
 video(string initID, string initTitle);

// The virtual functions to be implemented by all derived classes
 Date computeDueDate() const;
 double computeLateFee() const;

// Additional accessors
 string title();

private:
 string my_title;
};

16.4.1 Implementing the Derived Classes
First, the data relating to overdue lendables are summarized as a collection of glo-
bal constant objects at the top of the lendable.h file.

const int BOOK_BORROW_DAYS = 14;
const int VIDEO_BORROW_DAYS = 2;
const int CDROM_BORROW_DAYS = 7;
const double BOOK_LATE_FEE = 0.50;
const double VIDEO_LATE_FEE = 1.50;
const double FLAT_VIDEO_LATE_FEE = 5.00;
const double CDROM_LATE_FEE = 2.50;

The book constructor also uses an initialization list.

book::book(string initID, string initAuthor, string initTitle)
 : lendable (initID),
 my_author(initAuthor),

16.4 THE DERIVED CLASSES

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

630

 my_title(initTitle)
{
 // Initialization list took care of everything
}

The book constructor could initialize its newly added private data members. How-
ever, the initialization list is necessary because it allows the base class constructor
to be called from the derived class. Calling the base class constructor guarantees
that the same thing will be done for every single derived class. Besides, this is the
only way to call the lendable constructor—in an initialization list. This call to the
base class constructor:

: lendable (initID),

passes initID along to initialize the private data member declared in lendable.
However, a set_ID member function could have avoided this. So why bother with the
base class constructor and initialization list?

The real purpose for calling the base class constructor is to guarantee that what-
ever initialization is important to all derived classes will in fact occur. The program-
mer adheres to this by ensuring that all derived classes use initialization lists. The
base class constructor is called via an initialization list. This guarantees that any-
thing the base class does will be done for any and all derived classes.

In this next example, lendable::lendable(string initID) initializes all
lendable objects as available (my_availability(true)) and sets my_dueDate and
my_borrowersID to a global named constant recognized as being meaningless.

lendable::lendable(string initID)
 : my_ID(initID),
 my_dueDate(emptyDate),
 my_availability(true),
 my_borrowersID(emptyID)
{
 // More efficient initialization already occurred
}

The remaining book member function implementations have a few new items.
First, while testing, it was discovered that nothing was ever overdue. Rather than
running the program over a several week period, a conditional compilation was put
in place to allow testing of due dates and late fines. The computeDueDate function
gets called from lendable::checkSelfOut.

631

Date book::computeDueDate() const
{
 Date today;
#ifdef DebuggingLateFee
 return today - BOOK_BORROW_DAYS; // Compile only when defined
#else
 return today + BOOK_BORROW_DAYS; // Otherwise only compile this

#endif
}

If the test driver has this compiler directive:

#defines DebuggingLateFee

then the due date gets set to 14 days in the past. An immediate call to
lendable::dueDate finds the book was due two weeks ago. A lendable::lateFee
message returns 0.50 * 14 or $7.00 (see the test driver below).

16.4.2 Astrachan’s Date Class
The following Date operations were used from Astrachan’s Date class:

// a class for manipulating dates
// written 2/2/94, Owen Astrachan
// Date() --- construct default date (today)
// Date(int m, int d, int y) --- constructor requires three
// parameters:
// month, day, year, e.g.,
// Date d(4,8,1956); initializes d to
// represent the date April 8, 1956.
// Full year is required
//
// long int Absolute() --- returns absolute # of date assuming that
// Jan 1, 1 AD is day 1. Has property that
// Absolute() % 7 = k, where k = 0 is sunday
// k = 1 is monday, ... k = 6 is saturday
//
// string ToString() -- returns string version of date, e.g.,
// -- d.SetDate(11,23,1963); then d.ToString()
// returns string "November 23 1963"
// ***
// arithmetic operators for dates
// ***
// dates support some addition and subtraction operations
// Date d(1,1,1960); // 1960 is a leap year
// Date d2 = d + 1; // d2 is January 2, 1960
// Date d4 = d - 1; // d4 is December 31, 1959

16.4 THE DERIVED CLASSES

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

632

The Date::Absolute function returns the number of days since 1-1-1 AD. This al-
lows dates to be compared with <, >, <=, and so on. The following function used == to
return 0.00 as the late fee when the book gets checked in:

double book::computeLateFee() const
{
 Date today;
 int daysLate;
 daysLate = today - dueDate(); // Call protected base member
 // daysLate will be negative unless the book is overdue
 if(daysLate > 0)
 return daysLate * BOOK_LATE_FEE;
 else
 return 0.00;
}

The other member functions are typical accessors.

string book::author()
{
 return my_author;
}

string book::title()
{
 return my_title;
}

The video class looks almost exactly the same, except a video adds a my_title
data member only. If you want to see the code, visit the class definitions for lendable,
book, and video stored in lendable.h. You can also see the member function imple-
mentations in lendable.cpp. Both are on this textbook’s disk and at this textbook’s
Web site.

16.4.3 Testing the Derived Classes
The following program test drives video and book in a DebuggingLateFee mode.
Notice that the void show function takes a reference to a lendable object as an
argument. There is no lendable object passed! Remember that an abstract class
cannot be constructed. So without the little &, this function heading would be an
error:

void show(lendable aLendable) // Error, can't instantiate lendable

This test driver passes two different classes of arguments: aBook and aVideo.

633

// File name: testlend.cpp
//
#include <iostream>
using namespace std;

#define DebuggingLateFee // lendable.h now sets dueDate in the past
#include "lendable" // For the lendable, book, and video classes
#include "compfun" // For decimals(cout, 2)

void show(const lendable & aLendable)
{
 cout << "The lendable " << aLendable.lendableID();
 if(aLendable.isOverdue())
 cout << " is overdue. ";
 else
 cout << " is not overdue. ";

 cout << "Late fee = $" << aLendable.lateFee() << endl;

 cout << "Due date: " << aLendable.dueDate().ToString() << endl;

 if(aLendable.isAvailable())
 cout << "It is available. " << endl;
 else
 cout << "It is not available. " << aLendable.borrowersID()
 << " has it." << endl;

 cout << "---" << endl;
}

int main()
{ // Test drive video and book

 decimals(cout, 2); // To show late fees nicely

 cout << "TEST BOOK: " << endl;
 book aBook("QA76.1M46", "Rick Mercer", "Computing Fun.");
 show(aBook);

 aBook.checkSelfOut("555-55-5555");
 show(aBook);

 aBook.checkSelfIn();
 show(aBook);

 cout << "\nTEST VIDEO: " << endl;
 video aVideo("MGM10023", "Spartacus");
 show(aVideo);

16.4 THE DERIVED CLASSES

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

634

 aVideo.checkSelfOut("555-55-5555");
 show(aVideo);

 aVideo.checkSelfIn();
 show(aVideo);

 return 0;
}

OUTPUT (WITH DebuggingLateFee DEFINED; WITHOUT IT, NOTHING IS OVERDUE, FINES ARE 0)

TEST BOOK:
The lendable QA76.1M46 is not overdue. Late fee = $0.00
Due date: September 09 9999
It is available.

The lendable QA76.1M46 is overdue. Late fee = $7.00
Due date: April 27 1998
It is not available. 555-55-5555 has it.

The lendable QA76.1M46 is not overdue. Late fee = $0.00
Due date: September 09 9999
It is available.

TEST VIDEO:
The lendable MGM10023 is not overdue. Late fee = $0.00
Due date: September 09 9999
It is available.

The lendable MGM10023 is overdue. Late fee = $6.50
Due date: May 09 1998
It is not available. 555-55-5555 has it.

The lendable MGM10023 is not overdue. Late fee = $0.00
Due date: September 09 9999
It is available.

16.5 lendableList: A Heterogeneous
Container

The power of inheritance and polymorphism comes in very handy when you need to
store a collection of objects that are not of the same type. Consider the lendableList
class. Its knowledge responsibility is to know all lendables. This implies that there

635

could be books, videos, cdRoms, or any other new class of objects added to the lendable
hierarchy. Actually, lendableList will hold all three types of objects. When a con-
tainer holds a collection of dissimilar objects, it is said to be a heterogeneous con-
tainer.

The lendable class name represents any class of lendable. For this collection,
the trick is to have a collection of pointers to lendable. The following vector can
store 10 instances of any class derived from lendable:

vector <lendable*> item(5);

The elements in item are not lendables; instead the elements are pointers to any
class derived from lendable. A snapshot of memory could look like this:

Reference *item[j]

item[0] book

item[1] book

item[2] video

item[3] cdRom

item[4] book

Here is a program that constructs a vector of pointers to lendables. Notice that
the assignment statements assign different classes of objects to the same vector.

// File name: testleli.cpp
#include <vector>
using namespace std;

#define DebuggingLateFee // Sets due dates 2, 7, or 14 days ago
#include "lendable" // For the lendable class
#include "compfun"

void show(const lendable & aLendable)
{
 cout << "The lendable " << aLendable.lendableID();
 if(aLendable.isOverdue())
 cout << " is overdue. ";
 else
 cout << " is not overdue. ";

 cout << "Late fee = $" << aLendable.lateFee() << endl;

 cout << "Due date: " << aLendable.dueDate().ToString() << endl;

16.5 lendableList: A HETEROGENEOUS CONTAINER

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

636

 if(aLendable.isAvailable())
 cout << "It is available. " << endl;
 else
 cout << "It is not available. " << aLendable.borrowersID()
 << " has it." << endl;

 cout << "---" << endl;
}

int main()
{
 decimals(cout, 2); // To show late fees nicely

 vector<lendable*> item(10);
 item[0] = new book("BOOK 1", "Author One", "Title One");
 item[1] = new video("VIDEO 1", "Video Title One");
 item[2] = new book("BOOK 2", "Author Two", "Title Two");
 item[3] = new video("VIDEO 2", "Video Title Two");

 // Check out four lendables for borrower 444-44-4444; show them
 int j;
 for(j = 0; j < 4; j++)
 {
 item[j]->checkSelfOut("444-44-4444");
 show(*item[j]); // Pass the object pointed to by item[j]
 }
 return 0;
}

OUTPUT

The lendable BOOK 1 is overdue. Late fee = $7.00
Due date: April 27 1998
It is not available. 444-44-4444 has it.

The lendable VIDEO 1 is overdue. Late fee = $6.50
Due date: May 09 1998
It is not available. 444-44-4444 has it.

The lendable BOOK 2 is overdue. Late fee = $7.00
Due date: April 27 1998
It is not available. 444-44-4444 has it.

The lendable VIDEO 2 is overdue. Late fee = $6.50
Due date: May 09 1998
It is not available. 444-44-4444 has it.

637

The new operator allocates memory for the object and returns the address to
that object. Later on, because item is a vector of pointers, operations are performed
on the items in the vector by dereferencing them with ->, the arrow operator. For
example, during testing, all lendables can be checked back in with this loop:

// Check 'em all back in, no matter what class they are
for(j = 0; j < 4; j++)
{
 item[j]->checkSelfIn(); // Polymorphic message
}

16.5.1 The lendableList Class
The vector of pointers to lendables can be written as a data member.

16.5 lendableList: A HETEROGENEOUS CONTAINER

class lendableList {
public:
 void getLendable(string lendID);
 void putLendable(lendable);
private:
 vector<lendable*> my_data;
 int my_size;
};

Here is the final version of lendableList after it has undergone further design,
testing, and a few changes—especially related to the need for indirection (pointers)
in the parameter lists. Also, three member functions were added, and another re-
moved (putLendable was not necessary).

class lendableList {
public:
// Default constructor initializes the list of lendables
 lendableList();

//--destructor
 ~lendableList();

//--modifiers
 void addLendable(lendable* lendPtr);

CRH Card Class Definition, First Draft

Class: lendableList

Responsibilities:

know all lendables
getLendable(lendableID)

putLendable(lendable)

Helpers:

lendable

vector

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

638

 // Add the lendable to the lendable list

 void removeLendable(string lendableID);
 // Add the lendable to the lendable list

//--accessors
 bool getLendable(string searchID, lendable* & lendPtr) const;
 // If found return true, set second argument to point to lendable
 // inside this lendableList. The client can update me indirectly.

private:
 int my_size;
 int my_index;
 vector <lendable* > my_data; // vector of pointers to any class
}; // derived from the lendable class

Because the lendableList now returns a pointer to an element, librarian can up-
date the lendable indirectly like this:

lendableList lendList;
lendable* lendPtr;
if(lendList.getLendable("QA76.2", lendPtr))
{ // assert: lendPtr is a pointer to lendable with ID "QA76.2"
 // inside the lendable list
 lendPtr->checkSelfOut("Robert Evans");
 // assert: The lendable list has been updated
}

The addLendable and removeLendable member functions were added because
it seems that eventually some maintenance program will have to be able to add and
remove lendables. Besides, you’ll see that addLendable proves useful in the con-
structor. A destructor was added because there are many pointers in any lendableList
(this one starts with 2,000 chunks of allocated memory). When the program termi-
nates, the destructor returns memory. More importantly, however, the destructor
also updates the files that store the lendables. This makes lendableList somewhat
persistent. The objects will remain intact until the next time the program gets called
(assuming the power stays on, that is). To be truly persistent, each object should be
stored to a disk as soon as a change is made. This could be done with any number of
database management systems, but since we haven’t discussed this, the lendableList
class will instead will get help from the ifstream class to maintain the data.

639

16.5.2 A Heterogeneous Collection
The lendableList class is heterogeneous. The elements stored in a lendableList
object can be of any class derived from lendable. This has several implications.
First, the container that stores the elements is a vector of pointers to the base class.
So you see this data member:

vector <lendable*> my_data;

The next thing you might notice is parameters with *. Now that the underlying data
structure is a vector of pointers, there will be a lot of argument/parameter associa-
tion where the value being passed is a pointer to a lendable:

void addLendable(lendable* lendPtr); // Can't pass lendable, need *
bool getLendable(string searchID, lendable* & lendPtr) const;

The getLendable function heading was changed during testing because it suddenly
seemed important to indicate whether or not a lendable’s ID was actually found.
The return type is now bool. This also means that the pointer has to be passed back
to librarian as a reference parameter lendPtr.

bool getLendable(string searchID, lendable* & lendPtr) const;

The & was needed because getLendable now returns two values: either true or false
and a pointer to the object if found. A getLendable message now looks like this
(shown earlier):

if(lendList.getLendable("QA76.2", lendPtr))
{
 lendPtr->checkSelfOut(currentBorrower->borrowersID());
}

This guarded action also protects against dereferencing a pointer that points to
nothing when lendList is empty, for example, when the input files are not found.

The constructor initializes the lendableList by reading from two different in-
put files: books.dat and video.dat. Maintaining the cdRoms is left as a program-
ming project.

lendableList::addLendable should look familiar to those of you who studied
the bag and set classes.

void lendableList::addLendable(lendable* lendPtr)
{

16.5 lendableList: A HETEROGENEOUS CONTAINER

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

640

 if(my_size >= my_data.capacity())
 { // Avoid running out of room and out-of-range subscripts
 my_size = my_size + sizeIncrement;
 my_data.resize(my_size);
 }
 my_data[my_size] = lendPtr;
 my_size++;
}

Once again, sequential search is employed to find a lendable.

bool lendableList::getLendable(string searchID,
 lendable* & lendPtr) const
{
 int subscript;
 string nextID;

 // Perform a sequential search
 for(subscript = 0; subscript < my_size; subscript++)
 { // Search all items or break out of the loop when found
 nextID = my_data[subscript]->lendableID();
 if(nextID == searchID)
 { // Found it
 break;
 }
 }

 if (subscript < my_size)
 { // Found it
 lendPtr = my_data[subscript]; // Assign a pointer
 return true;
 }
 else
 { // Have to return something, so let it be the first
 lendPtr = my_data[0]; // Return a pointer that hopefully
 return false; // will never be used by the client!
 }
}

Here is a test driver that traverses the entire lendableList and then searches
for a particular lendable. The librarian object would often send getLendable mes-
sages.

#include <iostream>
using namespace std;
#include "lendlist" // For lendableList, lendable, book, video, cdRom
#include "date" // For Date::ToString

641

int main()
{
 lendableList lendList;
 lendable* lendPtr; // Store a reference to any lendable object

 string searchID = "QA76.2";
 if(lendList.getLendable(searchID, lendPtr))
 {
 if(lendPtr->isAvailable())
 { // Don't check out something that is unavailable
 cout << "Check out " << lendPtr->lendableID() << endl;
 lendPtr->checkSelfOut("Robert Evans");
 }
 else
 {
 cout << lendPtr->lendableID() << " unavailable" << endl;
 }
 }
 else
 {
 cout << searchID << " not found." << endl;
 cout << "Please recheck the lendable ID" << endl;
 }

 // Show updated status to indicate lendable list was in fact updated
 if(lendList.getLendable(searchID, lendPtr))
 {
 cout << "Borrower: " << lendPtr->borrowersID() << endl;
 cout << "Due: " << lendPtr->dueDate().ToString() << endl;
 }

 return 0;
}

OUTPUT (PROGRAM EXECUTED ON 11-MAY-1998)

Check out QA76.2
Borrower: Robert Evans
Due: May 25 1998

Chapter Summary
* This chapter presented another case study for object-oriented software development

to reinforce the object-oriented design strategy introduced in Chapters 12 and 13.
* The notion of inheritance was discovered when several classes were found that had

common behavior, common data, and at least one difference, such as different be-
havior for the same message.

CHAPTER SUMMARY

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

642

* An abstract class captures common operations and data amongst the classes de-
rived from that base class. The derived classes capture the differences.

* Role playing produced design decisions.
* lendable was the major class definition discussed in this chapter. It was designed

slowly to indicate the new consideration in designing an abstract class intended to
have derived classes.

* Initialization lists were introduced as a way to allow derived classes to call the base
class constructor.

* A heterogeneous container was implemented as a vector of pointers to the base
class. This allows for a collection of objects, where the elements may be constructed
from different classes.

Exercises
1. Provide a first-draft design of the base class for an account hierarchy. You should

be familiar enough with bank accounts to know what might be common. If you
are not, consult a domain expert—someone at a bank for example. The difference
between basicChecking and checkingWithLoan is this: basicChecking does not
allow withdrawals more than the balance but checkingWithLoan does. A
checkingWithLoan object also maintains the amount of money that has been
“loaned” to the account. A savings account earns interest; the other two do not.

basicChecking checkingWithLoan

account

savings

2. Provide a first-draft design of the three derived classes in the account hierarchy.
Do not worry about the constructors yet.

3. Write the constructors for one of the derived classes above.

4. Rewrite the track class constructor using an initialization list (see track.cpp).

5. What action requires an initialization list?

643

6. Provide a first-draft design of the base class for a United States employee hierar-
chy to capture the operations common to all employees that are paid on an hourly
basis with hours over 40 paid at 1.5 times the hourly rate. Then, the only differ-
ence amongst the derived classes is in the way the U.S. federal income tax is
computed for withholding from the paycheck. For a start, see weekemp.h and pro-
gramming project 7N, “Maintain weeklyEmp .” Also check out http://http://http://http://http://
wwwwwwwwwwwwwww.irs.irs.irs.irs.irs.ustreas.ustreas.ustreas.ustreas.ustreas.gov/prod/forms_pubs/pubs.gov/prod/forms_pubs/pubs.gov/prod/forms_pubs/pubs.gov/prod/forms_pubs/pubs.gov/prod/forms_pubs/pubs.html.html.html.html.html for the different tax tables
for the current year or use the tax tables given below for 1998. (Note: A complete
design for all classes of employees would look quite different.)

weekly biweekly

employee

monthly

TABLE 16.1. Weekly payroll period (1998)

EXERCISES

One withholding allowance = $51.92

(a) SINGLE person(a) SINGLE person(a) SINGLE person(a) SINGLE person(a) SINGLE person (including head of household) (b) MARRIED person(b) MARRIED person(b) MARRIED person(b) MARRIED person(b) MARRIED person

If the amount of wages The amount of If the amount of wages The amount of

(after subtracting with- income tax (after subtracting with- income tax to

holding allowances) is: to withhold is: holding allowances) is: withhold is:

Not over $51 . . . $0 Not over $124 . . . $0

Over–Over–Over–Over–Over– But not over–But not over–But not over–But not over–But not over– Of excess over–Of excess over–Of excess over–Of excess over–Of excess over– Over–Over–Over–Over–Over– But not over–But not over–But not over–But not over–But not over– Of excess over–Of excess over–Of excess over–Of excess over–Of excess over–

 $51 $517 . . 15% $51 $124 $899 . . 15% $124

 $517 $1,105 . . $69.90 plus 28% $517 $899 $1,855 . . $116.25 plus 28% $899

$1,105 $2,493 . . $234.54 plus 31% $1,105 $1,855 $3,084 . . $383.93 plus 31% $1,855

$2,493 $5,385 . . $664.82 plus 36% $2,493 $3,084 $5,439 . . $764.92 plus 36% $3,084

$5,385$1,705.94 plus 39.6% $5,385 $5,439$1,612.72 plus 39.6% $5,439

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

644

TABLE 16.2. Biweekly payroll period (1998)

One withholding allowance = $103.85

(a) SINGLE person(a) SINGLE person(a) SINGLE person(a) SINGLE person(a) SINGLE person (including head of household) (b) MARRIED person(b) MARRIED person(b) MARRIED person(b) MARRIED person(b) MARRIED person

If the amount of wages The amount of If the amount of wages The amount of

(after subtracting with- income tax (after subtracting with- income tax

holding allowances) is: to withhold is: holding allowances) is: to withhold is:

Not over $51 . . . $0 Not over $51 . . . $0

Over–Over–Over–Over–Over– But not over–But not over–But not over–But not over–But not over– Of excess over–Of excess over–Of excess over–Of excess over–Of excess over– Over–Over–Over–Over–Over– But not over–But not over–But not over–But not over–But not over– Of excess over–Of excess over–Of excess over–Of excess over–Of excess over–

 $102 $1,035 . . 15% $102 $248 $1,798 . . 15% $248

$1,035 $2,210 . . $139.95 plus 28% $1,035 $1,798 $3,710 . . $232.50 plus 28% $1,798

$2,210 $4,987 . . $468.95 plus 31% $2,210 $3,710 $6,167 . . $767.86 plus 31% $3,710

$4,987 $10,769 . . $1,329.82 plus 36% $4,987 $6,167 $10,879 . . $1,529.53 plus 36% $6,167

$10,769$3,411.34 plus 39.6% $10,769 $10,879$3,225.85 plus 39.6% $10,879

TABLE 16.3. Monthly payroll period (1998)

One withholding allowance = $225.00

(a) SINGLE person(a) SINGLE person(a) SINGLE person(a) SINGLE person(a) SINGLE person (including head of household) (b) MARRIED person(b) MARRIED person(b) MARRIED person(b) MARRIED person(b) MARRIED person

If the amount of wages The amount of If the amount of wages The amount of

(after subtracting with- income tax (after subtracting with- income tax

holding allowances) is: to withhold is: holding allowances) is: to withhold is:

Not over $51 . . . $0 Not over $51 . . . $0

Over–Over–Over–Over–Over– But not over–But not over–But not over–But not over–But not over– Of excess over–Of excess over–Of excess over–Of excess over–Of excess over– Over–Over–Over–Over–Over– But not over–But not over–But not over–But not over–But not over– Of excess over–Of excess over–Of excess over–Of excess over–Of excess over–

 $221 $2,242 . . 15% $221 $538 $3,896 . . 15% $538

 $2,242 $4,788 . . $303.15 plus 28% $2,242 $3,896 $8,038 . . $503.70 plus 28% $3,896

 $4,788 $10,804 . . $1,016.03 plus 31% $4,788 $8,038 $13,363 . . $1,663.46 plus 31% $8,038

 $10,804 $23,333 . . $2,880.99 plus 36% $10,804 $13,363 $23,571 . . $3,314.21 plus 36% $13,363

$23,333$7,391.43 plus 39.6% $23,333 $23,571$6,989.09 plus 39.6% $23,571

7. Design the class definitions for the derived classes weekly, biWeekly, and monthly.

645

ANALYSIS/DESIGN/PROGRAMMING TIPS

Analysis / Design / Programming Tips

1. Inheritance and polymorphism are part of object-oriented
analysis, design, and programming. But they are not the
only things.
Object-oriented (OO) thinking also involves encapsulation—a public interface to
private data. Additionally, OO software development involves making analysis and
design decisions with the object as the major architectural structure. If there is
inheritance, so be it. If there is not, you are still doing things in an object-oriented
fashion.

2. Use the delegation model to help with your design.
Object-oriented software often has one object delegating responsibility to another
object that may in turn delegate responsibility to another object. Try to think that
way. Users of the class can then have a clearer understanding of the system. For
example, librarian may send a checkSelfIn message that in turn fires off mes-
sages to other objects. This is analogous to making a call to a free function, that may
in turn call another function behind the scenes. For example, the find function from
<algorithm> most likely makes several function calls and/or message sends behind
the scenes.

3. Role playing helps because three or four minds are better
than one.
Any project can benefit from many people. Most software is developed in a team
setting. Anyone can have ideas. Someone with no knowledge of programming can
help simply by asking questions that others may be too shy to ask, feeling they are
supposed to know it already. The team approach also helps set up a common vocabu-
lary among the stakeholders. Besides, it can be more fun working in groups, even
though it can also be challenging to deal with a diversity of opinions.

4. Use inheritance when you can generalize about two or
more objects.
If you recognize that several classes have some common behaviors and attributes
but there is some distinguishing behavior, there is a chance that inheritance might

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

646

prove useful. However, with all the special considerations necessary to plan for add-
ing new derived classes, it might not seem worth it. Sometimes inheritance is the
best way to go. For example, consider a window on your computer screen. It has a
collection of other windows, buttons, menus, selector lists, icons, and so on. Think of
that window as a heterogeneous list of graphic objects (kind of like lendableList).
All graphic objects can be “drawn” in a screen, but they are drawn in different ways.
When the window draws itself, the polymorphic draw operation is applied to all the
graphics in the window collection. There are some commonalities between the graphic
objects; however, there are enough differences to justify many derived classes. This
has proven to be an effective use of inheritance.

5. Put only public messages in the public section.
Don’t clutter the public interface with member functions best kept private. If you
have an inheritance hierarchy, place the utility functions (those not called by any
client) in the protected: access sections. With public inheritance, all derived classes
inherit the ancestor’s public: and protected: members.

6. This has been only a brief introduction to inheritance.
This chapter did not attempt to demonstrate all concepts related to inheritance. It
was only an introduction. Proper use of inheritance is still being debated and opin-
ions vary widely.

7. There is a heavy use of indirection in lendableList. Here
is a summary.
First, the container that stores the elements is a vector of pointers to the base class.
So lendableList has this data member:

vector<lendable*> my_data; // Elements can point to derived objects

Another new thing was pointer parameters (with * after them). These parameters
are used to communicate addresses of objects rather than objects themselves. This
is part of the syntax required for implementing polymorphism in C++.

void addLendable(lendable* lendPtr); // Need *; cannot pass a lendable

A new kind of parameter was shown in lendableList::getLendable.

647

bool getLendable(string searchID, lendable* & lendPtr) const;

The second parameter is a reference to a pointer. The & is added so a change to
lendPtr in the function also changes the pointer argument in the message, which in
the following call is lendPtr.

lendList.getLendable("QA76.2", aPointerToALendable)

Programming Projects

16A Implement cdRom
Completely implement and test the cdRom class as a class derived from lendable. You will
need these files: lendable.h and lendable.cpp.

16B Implement the account Hierarchy
Completely implement and test the account hierarchy described in exercise 1.

16C Implement the employee Hierarchy
Completely implement and test the employee hierarchy described in exercise 6.

16D Complete the College Library System
Find two or three others and
* walk through some scenarios with the college library system
* develop your own CRH cards or modify the ones that exist in this chapter

When you have a full understanding of the system (have practiced those scenarios)
* design all class interfaces (the lendable hierarchy has mostly been completed in

lendable.h and lendable.cpp)
* separately test all classes
* integrate the classes and test the entire system

PROGRAMMING PROJECTS

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

648

