
Objectives
•Enforcing encapsulation: Cloning
•Parameter passing

Oct 4, 2023 Sprenkle - CSCI209 1

Extra Credit Opportunity:
“That Quiet Little Voice: When Design and Ethics Collide”
•Monday, Oct. 9 at 5 p.m.

Stackhouse Theater
•George Aye
ØCo-founder and director of

innovation at Greater Good Studio

Oct 4, 2023 Sprenkle - CSCI209 2

https://columns.wlu.edu/george-aye-is-the-next-speaker-in-
the-mudd-lecture-series/

Review
• What are benefits of

programmatically/automatically
testing (i.e., having the program
execute test cases and determine
if the test case fails)?

• What does static mean?
• What does a static method have

access to?
• How do you call a static method?
• When should we make a method

static?
Ø What are static methods similar to in

Python?
• When should we make a field static?
• How do you create pretty, formatted

output?
Ø What is the syntax? What are the

components?
Oct 4, 2023 Sprenkle - CSCI209 3

ENFORCING ENCAPSULATION

Oct 4, 2023 Sprenkle - CSCI209 4

Encapsulation/Black-Box Programming Revisited

•Objects should hide their data and only allow other
objects to access this data through accessor and
mutator methods

•Common programmer mistake:
ØCreating an accessor method that returns a reference to a

mutable (changeable) object

Oct 4, 2023 Sprenkle - CSCI209 5

Example of Black-box Programming

• We don’t want to allow direct changing of Chicken’s state (height and weight)
Ø Don’t want them set to 0 or negative values
Ø We want the height and weight to be proportional, so there are no separate

setHeight and setWeight methods
• Only allowing access to the methods allows us to restrict the kinds of changes

that can be made to the state of the object
Oct 4, 2023 Sprenkle - CSCI209 6

private int height; // in cm
 private double weight; // in lbs
 …

 public void feed() {
 weight += .3;
 height += 1;
 }

Violating Black-Box Programming Principle

Oct 4, 2023 Sprenkle - CSCI209 7

public class Farm {
 . . .
 private Chicken headRooster;

 public Chicken getHeadRooster() {
 return headRooster;
 }
 . . .
}

Violating Black-Box Programming Principle

Oct 4, 2023 Sprenkle - CSCI209 8

public class Farm {
 . . .
 private Chicken headRooster;

 public Chicken getHeadRooster() {
 return headRooster;
 }
 . . .
}

public class OtherCode {
 . . .
 Chicken stolen = farm.getHeadRooster();
 . . .
}

Problem: Giving others access to Farm’s headRooster
through the public getHeadRooster method.
Others can then feed your rooster or change his name!!
(Silly example; understand consequences)

Fixing the Problem: Cloning

Oct 4, 2023 Sprenkle - CSCI209 9

public class Farm {
 . . .
 private Chicken headRooster;

 public Chicken getHeadRooster() {
 return (Chicken) headRooster.clone();
 }
 . . .
}

• In previous example, could modify returned object’s state
•Here, another Chicken object, with the same data as headRooster,
is created and returned to the user
• If the user modifies (e.g., feeds) that object, headRooster is not affected

Method is available to all objects
(inherited from Object)

Cloning
•Cloning is a more complicated topic than it seems from

the example
ØOut of scope for this class

•See Effective Java for more information

Oct 4, 2023 Sprenkle - CSCI209 10

What about the Chicken’s getter methods?

Oct 4, 2023 Sprenkle - CSCI209 11

public class Farm {
 . . .
 private Chicken headRooster;

 public Chicken getHeadRooster() {
 return headRooster;
 }
 . . .
}

Problem: Giving others access to Farm’s headRooster
through the public getHeadRooster method.
Others can then feed your rooster or change his name!!
(Silly example; understand consequences)

But: Why was it okay to return the name, height, or weight of a chicken?
Similar to Python, primitive types and Strings are immutable.
Since those attributes have immutable data types (String, int, double, respectively),
others can’t change those attributes when retrieved using a getter method.

PARAMETER PASSING

Oct 4, 2023 Sprenkle - CSCI209 12

Method Parameters in Java
•Java always passes parameters into methods by value

ØMeaning: the formal parameter becomes a copy of the
argument/actual parameter’s value
Øcaller and callee have two independent variables with the same value

ØConsequence: Methods cannot change the variables used as input
parameters

ØA subtle point, so we will go through several examples
•Python is something that’s not quite pass-by-value—it

depends on if the object is mutable or immutable
ØPass-by-alias is one term used

Oct 4, 2023 Sprenkle - CSCI209 13

Method Parameters in Java

Oct 4, 2023 Sprenkle - CSCI209 14

public static void main(String[] args) {
 int x = 10;
 int squared = square(x);
 System.out.println("The square of " + x + " is " +

 squared);
}

public static int square(int num) {
 return num*=num;
}

Draw the stack as it changes
(similar to Python):

Method Parameters in Java

Oct 4, 2023 Sprenkle - CSCI209 15

public static void main(String[] args) {
 int x = 10;

int squared = square(x);
 System.out.println("The square of " + x + " is " +

 squared);
}

public static int square(int num) {
 return num*=num;
}

Draw the stack as it changes
(similar to Python): main x 10

squared

Method Parameters in Java

Oct 4, 2023 Sprenkle - CSCI209 16

public static void main(String[] args) {
 int x = 10;
 int squared = square(x);
 System.out.println("The square of " + x + " is " +

 squared);
}

public static int square(int num) {
 return num*=num;
}

square num 10

x 10
squared main

num copies the value of x

Method Parameters in Java

Oct 4, 2023 Sprenkle - CSCI209 17

public static void main(String[] args) {
 int x = 10;
 int squared = square(x);
 System.out.println("The square of " + x + " is " +

 squared);
}

public static int square(int num) {
return num*=num;

}

square num 100

x 10
squared main

Method Parameters in Java

Oct 4, 2023 Sprenkle - CSCI209 18

public static void main(String[] args) {
 int x = 10;
 int squared = square(x);

System.out.println("The square of " + x + " is " +
 squared);

}

public static int square(int num) {
 return num*=num;
}

main x 10
squared 100The square of 10 is 100

Output:

What’s the Output?

Oct 4, 2023 Sprenkle - CSCI209 19

public static void main(String[] args) {
 int x = 27;
 System.out.println(x);
 doubleValue(x);
 System.out.println(x);
}
public static void doubleValue(int p) {
 p = p * 2;
}

1. Think (independently) for 1 minute
2. Share with your neighbor.
3. Discuss as class

What’s the Output?

Oct 4, 2023 Sprenkle - CSCI209 20

27
27

public static void main(String[] args) {
 int x = 27;
 System.out.println(x);

doubleValue(x);
 System.out.println(x);
}
public static void doubleValue(int p) {
 p = p * 2;
}

main x 27

double
Value p 27

Output (so far):
27

What’s the Output?

Oct 4, 2023 Sprenkle - CSCI209 21

27
27

public static void main(String[] args) {
 int x = 27;
 System.out.println(x);

doubleValue(x);
 System.out.println(x);
}
public static void doubleValue(int p) {

p = p * 2;
}

main x 27

double
Value p 54

public static void main(String[] args) {
 int x = 27;
 System.out.println(x);
 doubleValue(x);

System.out.println(x);
}
public static void doubleValue(int p) {
 p = p * 2;
}

What’s the Output?

Oct 4, 2023 Sprenkle - CSCI209 22

27
27

main x 27

Pass by Value: Objects
•Primitive types are a little more obvious
ØCan’t change original variable

•For objects, passing a copy of the parameter looks like:

•Pass Chicken object variable to methodName when
calling method:

Oct 4, 2023 Sprenkle - CSCI209 23

public void methodName(Chicken c)

methodName(chicken);

chicken =

c =

x00FFBB weight =

height =

name =

5.0

45

"Sallie Mae"x00FFBB

height
=
name =

38

weight =

height =

name =

5.0

45

"Sallie Mae"

Pass by Value: Objects
•What happens in this case?

Oct 4, 2023 Sprenkle - CSCI209 24

public void methodName(Chicken c) {
 if(c.getWeight() < MIN) {
 c.feed();
 }
 …
}

methodName(chicken);

chicken =

c =

Can the Chicken object be
changed in the called method?

x00FFBB

x00FFBB

weight =

height =

name =

5.0

45

"Sallie Mae"

Pass by Value: Objects
•What happens in this case?

Oct 4, 2023 Sprenkle - CSCI209 25

public void methodName(Chicken c) {
 if(c.getWeight() < MIN) {
 c.feed();
 }
 …
}

chicken =

c =

Can the Chicken object be
changed in the called method?

YES! Both chicken and c are
pointing to the same Chicken object

methodName(chicken);

x00FFBB

x00FFBB

Example 1: What’s the Output?

Oct 4, 2023 Sprenkle - CSCI209 26

Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5.0, 45);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .

// From Farm class
public void feedChicken(Chicken c) {
 c.setWeight(c.getWeight() + .5);
}

(setWeight was not a method defined in our Chicken class; just for this example)

Example 1: What’s the Output?

Oct 4, 2023 Sprenkle - CSCI209 27

Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5.0, 45);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .

// From Farm class
public void feedChicken(Chicken c) {
 c.setWeight(c.getWeight() + .5);
}

sal =

height
=

38

“Fred”

x00FFBB
height =

weight =

name =

45

5.0

"Sallie Mae"

Example 1: What’s the Output?

Oct 4, 2023 Sprenkle - CSCI209 28

Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5.0, 45);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .

// From Farm class
public void feedChicken(Chicken c) {
 c.setWeight(c.getWeight() + .5);
}

sal =

c =
height
=

38

“Fred”

x00FFBB
height =

weight =

name =

45

5.0

"Sallie Mae"x00FFBB

c copies the value of sal

Example 1: What’s the Output?

Oct 4, 2023 Sprenkle - CSCI209 29

Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5.0, 45);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .

// From Farm class
public void feedChicken(Chicken c) {
 c.setWeight(c.getWeight() + .5);
}

sal =

c =
height
=

38

“Fred”

x00FFBB
height =

weight =

name =

45

5.5

"Sallie Mae"x00FFBB

Example 1: What’s the Output?

Oct 4, 2023 Sprenkle - CSCI209 30

Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5.0, 45);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .

// From Farm class
public void feedChicken(Chicken c) {
 c.setWeight(c.getWeight() + .5);
}

5.0
5.5

sal =

height
=

38

“Fred”

x00FFBB
height =

weight =

name =

45

5.5

"Sallie Mae"

Example 2: What’s the Output?

Oct 4, 2023 Sprenkle - CSCI209 31

Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5.0, 45);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .

// From Farm class
public void feedChicken(Chicken c) {
 c = new Chicken(c.getName(), c.getWeight(), c.getHeight());
 c.setWeight(c.getWeight() + .5);
}

Example 2: Tracing through Execution

Oct 4, 2023 Sprenkle - CSCI209 32

Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5.0, 45);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .
// From Farm class
public void feedChicken(Chicken c) {
 c = new Chicken(c.getName(), c.getHeight(), c.getWeight());
 c.setWeight(c.getWeight() + .5);
}

sal = x00FFBB

height
=
name =

38

“Fred”

height =

weight =

name =

45

5.0

"Sallie Mae"

Example 2: Tracing through Execution

Oct 4, 2023 Sprenkle - CSCI209 33

Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5.0, 45);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .
// From Farm class
public void feedChicken(Chicken c) {
 c = new Chicken(c.getName(), c.getHeight(), c.getWeight());
 c.setWeight(c.getWeight() + .5);
}

sal =

c =

x00FFBB

height
=
name =

38

“Fred”

height =

weight =

name =

45

5.0

"Sallie Mae"x00FFBB

c copies the value of sal

height
=
name =

38

weight =

height =

name =

5.0

45

"Sallie Mae"

Example 2: Tracing through Execution

Oct 4, 2023 Sprenkle - CSCI209 3434

public void feedChicken(Chicken c) {
c = new Chicken(c.getName(), c.getWeight(), c.getHeight());

 c.setWeight(c.getWeight() + .5);
}

sal =

c =

x00FFBB

x00FFCC

A new Chicken object is created (at a new
memory address).
c is assigned to/references that object.

height
=
name =

38

weight =

height =

name =

5.0

45

"Sallie Mae"

Example 2: Tracing through Execution

Oct 4, 2023 Sprenkle - CSCI209 35

public void feedChicken(Chicken c) {
c = new Chicken(c.getName(), c.getWeight(), c.getHeight());

 c.setWeight(c.getWeight() + .5);
}

sal =

c =

x00FFBB

x00FFCC

The object that c references is updated;
the object that sal references is unaffected

height
=
name =

38

weight =

height =

name =

5.0

45

"Sallie Mae"

height
=
name =

38

weight =

height =

name =

5.0

45

"Sallie Mae"

Example 2: Tracing through Execution

Oct 4, 2023 Sprenkle - CSCI209 36

public void feedChicken(Chicken c) {
 c = new Chicken(c.getName(), c.getWeight(), c.getHeight());

c.setWeight(c.getWeight() + .5);
}

sal =

c =

x00FFBB

x00FFCC

The object that c references is updated;
the object that sal references is unaffected

height
=
name =

38

weight =

height =

name =

5.0

45

"Sallie Mae"

height
=
name =

38

weight =

height =

name =

5.5

45

"Sallie Mae"

Example 2: Tracing through Execution

Oct 4, 2023 Sprenkle - CSCI209 37

Farm farm = new Farm("OldMac");
Chicken sal = new Chicken("Sallie Mae", 5.0, 45);
System.out.println(sal.getWeight());
farm.feedChicken(sal);
System.out.println(sal.getWeight());
. . .
// From Farm class
public void feedChicken(Chicken c) {
 c = new Chicken(c.getName(), c.getWeight(),
 c.getHeight());
 c.setWeight(c.getWeight() + .5);
}

sal = x00FFBB

5.0
5.0

height
=
name =

38

weight =

height =

name =

5.0

45

"Sallie Mae"c is out of scope/no longer accessible

Summary of Passing Parameters to Methods
•Everything is passed by value in Java

•An object variable (not an object) is passed into a
method
ØChanging the state of an object in a method changes the

state of object outside the method
ØCalled method does not get a copy of the original object

Oct 4, 2023 Sprenkle - CSCI209 38

Looking Ahead: Assignment 3
•Assignment 3 – due Thursday at 11:59
ØBuilding on the Birthday class

•Overloading constructor
•Overriding methods

ØCreating an application, practicing
•Control structures
•Using your own class and classes from the Java API

Oct 4, 2023 Sprenkle - CSCI209 39

Looking Ahead: Exam 1
•Exam 1 – Friday
ØOnline, timed exam: 70 minutes

•No class Friday but Sprenkle will hold office hours
•Opens: Friday at 8:00 a.m.; Closes: Sunday at 11:59 p.m.

ØOpen book/notes/slides – but do not rely on that
•NOT open internet

ØPrep document online
Ø3 sections:

•Very Short Answer, Short Answer, Coding

Oct 4, 2023 Sprenkle - CSCI209 40

