
Objectives
•Packages
•More on Inheritance

Oct 9, 2023 Sprenkle - CSCI209 1

PACKAGES

Oct 9, 2023 Sprenkle - CSCI209 2

Review: Packages
•Hierarchical structure of Java classes
ØSimilar to Python’s modules
ØDirectories of directories

Oct 9, 2023 Sprenkle - CSCI209 3

java

net

lang

util

Object

Scanner

Fully qualified name: java.lang.StringString

Importing Packages
•Can import one class at a time or all the classes

within a package
•Examples:

Ø* form may increase compile time
•BUT, no effect on run-time performance

Oct 9, 2023 Sprenkle - CSCI209 4

import java.util.Scanner;
import java.util.*; Import entire java.util package

Why Packages?
•Organizes code
ØGroups related code into directory structure

•Reduces chance of a conflict between names of
classes
ØExample: Java’s library has two classes named Array:

Oct 9, 2023 Sprenkle - CSCI209 5

java.lang.reflect.Array
java.sql.Array

Packaging Code
• Use package keyword to say that a class belongs to a package:

Øpackage my.package.name;
ØFirst line in class file
ØClasses without a declared package (like what we’ve been doing) are

in the default package
• Typically, use a unique prefix, similar to domain names

Ø com.ibm
Øedu.wlu.cs.logic

• Use package name to create directory hierarchy
ØFor example, code in edu.wlu.cs.logic package would be in a logic

directory inside a cs directory inside a wlu directory inside a edu
directory

We will start organizing our code in packages soon…
Oct 9, 2023 Sprenkle - CSCI209 6

INHERITANCE

Oct 9, 2023 Sprenkle - CSCI209 7

Review: Inheritance (from CSCI112)
•What are the benefits of inheritance?
•What are examples of inheritance?
•When should you use inheritance?

Oct 9, 2023 Sprenkle - CSCI209 8

Inheritance
•Build new classes based on existing classes
ØAllows code reuse

•Start with a class (parent or super class)
•Create another class that extends or specializes

the class
ØCalled the child, subclass, or derived class
ØUse extends keyword to make a subclass

Oct 9, 2023 Sprenkle - CSCI209 9

Child class
•Inherits all of parent class’s methods and fields

ØNote on private fields: all are inherited, just can’t access
ØStatic methods are inherited but cannot be overridden

•Constructors are not inherited
•Can override methods

ØRecall: overriding - methods have the same name and
parameters, but implementation is different

•Can add methods or fields for additional
functionality

•Use super object to call parent’s method
ØEven if child class redefines parent class’s method

Oct 9, 2023 Sprenkle - CSCI209 10

Inheriting Private Variables

Oct 9, 2023 Sprenkle - CSCI209 11

Parent

pr
iv

at
e

Child

Pa
re

nt

pr
iv

at
e

Parent

Parent has private variables.
Objects of Parent class can access.

Child class inherits the private
variables from Parent but
cannot directly access them.
Call Parent methods that can!

Rooster class
•Could write class from scratch, but …
•A rooster is a chicken
ØBut it adds something to (or specializes) what a

chicken is/does

•Classic mark of inheritance: is a relationship
•Rooster is child class
•Chicken is parent class

Oct 9, 2023 Sprenkle - CSCI209 12

Access Modifiers
•public

ØAny class can access
•private

ØNo other class can access (including child classes)
• Must use parent class’s public accessor/mutator methods

•protected
ØChild classes can access
ØMembers of package can access
ØOther classes cannot access

Oct 9, 2023 Sprenkle - CSCI209 13

Access Modes
Accessible to Member Visibility

public protected package private
Defining class Yes Yes Yes Yes

Class in same
package

Yes Yes Yes No

Subclass in
different package

Yes Yes No No

Non-subclass
different package

Yes No No No

Oct 9, 2023 Sprenkle - CSCI209 14

Default (if none specified)

• Visibility for fields: who can access/change
• Visibility for methods: who can call

protected
•Accessible to subclasses and members of package
•Can’t keep encapsulation “pure”
ØDon’t want others to access fields directly
ØMay break code if you change your implementation

•Assumption?
ØSomeone extending your class with protected access

(or in same package) knows what they are doing
Oct 9, 2023 Sprenkle - CSCI209 15

Guidance on Access Modifiers
•If you’re uncertain which access modifier to use

(public, protected, package/default, or private),
use the most restrictive
ØChanging to less restrictive later à easy
ØChanging to more restrictive à may break code that

uses your classes

Oct 9, 2023 Sprenkle - CSCI209 16

Changes to Chicken Class
•Added a new instance variable called isFemale
•Added getter and setter for isFemale
•Updated toString, equals methods accordingly

•2 Chicken classes in examples
ØPrivateChicken.java private instance variables
ØProtectedChicken.java protected instance variables

Oct 9, 2023 Sprenkle - CSCI209 17

Rooster class

Oct 9, 2023 Sprenkle - CSCI209 18

public class Rooster extends Chicken {
 public Rooster(String name, int height, double weight) {

 super(name, height, weight, false);
 }

 // new functionality
 public void crow() { … }

 …
}

Call to super constructor must be first statement in constructor

extends means that Rooster
is a child of Chicken

Rooster class

Oct 9, 2023 Sprenkle - CSCI209 19

public class Rooster extends Chicken {
 public Rooster(String name, int height, double weight) {
 // all instance fields inherited
 // from super class
 this.name = name;
 this.height = height;
 this.weight = weight;
 this.is_female = false;
 }

 // new functionality
 public void crow() {… }
 …

If no explicit call to super, calls default
super constructor with no parameters

extends means that Rooster
is a child of Chicken

(not one of the
examples posted online)

Comparing Rooster Implementations

Oct 12, 2022 Sprenkle - CSCI209 20

@Override
 public void feed() {
 // overrides superclass; greater gains by rooster
 this.setWeight(this.getWeight() + WEIGHT_GAIN);
 this.setHeight(this.getHeight() + HEIGHT_GAIN);
 }

@Override
 public void feed() {
 //overrides superclass; greater gains by rooster
 weight += WEIGHT_GAIN;
 height += HEIGHT_GAIN;
 }

Parent class’s weight and height are protected

Parent class’s weight and height are private

Need to trust child classes
won’t mess up fields

Code is bulkier

Constructor Chaining
•Constructor automatically calls constructor of

parent class if not done explicitly
Øsuper();

•What if parent class does not have a constructor
with no parameters?
ØCompilation error
ØForces child classes to call a constructor with

parameters
Oct 9, 2023 Sprenkle - CSCI209 21

Inheritance Tree: Constructor Chaining
•java.lang.Object
ØChicken
•Rooster

•Call parent class’s constructor first
ØKnow you have fields of parent class before

implementing constructor for your class

Oct 9, 2023 Sprenkle - CSCI209 22

Object

Chicken

Rooster

1

2

Overriding and New Methods

Oct 9, 2023 Sprenkle - CSCI209 23

public class Rooster extends Chicken {
 …

 // overrides superclass; greater gains
 @Override
 public void feed() {
 weight += .5;
 height += 2;
 }

 // new functionality
 public void crow() {
 System.out.println("Cocka-Doodle-Doo!");
 }
}

Same method signature
as parent class

Specializes the class

Shadowing Parent Class Fields
•Shadowing: Child class has field with same name

as parent class
ØExample: more precision for a constant

•e.g., more weight gain for a rooster

field // this class's field
this.field // this class's field
super.field // super class's field

Oct 9, 2023 Sprenkle - CSCI209 24

Multiple Inheritance
•In Python, a class can inherit more than one

parent class
ØChild class has the fields from both parent classes

•This is NOT possible in Java.
ØA class may extend (or inherit from) only one class

Oct 9, 2023 Sprenkle - CSCI209 25

POLYMORPHISM & DISPATCH

Oct 9, 2023 Sprenkle - CSCI209 26

Polymorphism
• Polymorphism is an object’s ability to vary behavior based on

its type
• You can use a child class object whenever the program expects

an object of the parent class
• Object variables are polymorphic
• A Chicken object variable can refer to an object of class
Chicken, Rooster, Hen, or any class that inherits from
Chicken

Oct 9, 2023 Sprenkle - CSCI209 27

Chicken[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;
chickens[2] = baby;

We can guess the actual types
But compiler can’t

Somewhere Else…

•These objects were instantiated at some point in
time …

Oct 9, 2023 Sprenkle - CSCI209 28

Rooster foghorn = new Rooster(…);
Hen momma = new Hen(…);
Chicken baby = new Chicken(…);

Compiler’s Behavior

•We know chickens[1] is probably a Rooster, but to
compiler, it’s a Chicken so

 chickens[1].crow(); will not compile

Oct 9, 2023 Sprenkle - CSCI209 29

Chicken[] chickens = new Chicken[3];
chickens[0] = momma; // a Hen
chickens[1] = foghorn; // a Rooster
chickens[2] = baby; // a Chicken

Compiler’s Behavior
• When we refer to a Rooster object through a Rooster

object variable, compiler sees it as a Rooster object
• If we refer to a Rooster object through a Chicken object

variable, compiler sees it as a Chicken object.

• We cannot assign a parent class object to a child class
object variable
ØEx: Rooster is a Chicken, but a Chicken is not necessarily a
Rooster

Oct 9, 2023 Sprenkle - CSCI209 30

Rooster r = new Chicken(…);

à Object variable determines how compiler sees object.

Polymorphism

Oct 9, 2023 Sprenkle - CSCI209 31

Chicken[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;
chickens[2] = baby;

chickens[1].feed();

Compiles because Chicken has a feed method.

But, which feed method is called –
 Chicken’s or Rooster’s?

Polymorphism
•Which method do we call when we call
chicken[1].feed()?
Rooster’s or Chicken’s?

•In Java: Rooster’s!
ØObject is a Rooster
ØJVM figures out object’s class at runtime and runs the

appropriate method
•Dynamic dispatch

ØAt runtime, the object’s class is determined
ØAppropriate method for that class is dispatched

Oct 9, 2023 Sprenkle - CSCI209 32

Feed the Chickens!

•Dynamic dispatch calls the method corresponding to
the actual class of each object at run time
ØThis is the power of polymorphism and dynamic dispatch!

Oct 9, 2023 Sprenkle - CSCI209 33

for(Chicken c: chickens) {
 c.feed();
}

How to read this code?
What happens in execution?

Chicken[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;
chickens[2] = baby;

Recall:

Think on your own for 1 minute

Dynamic Dispatch vs. Static Dispatch
• Dynamic dispatch is not necessarily a property of statically typed

object-oriented programming languages in general
• Some OOP languages use static dispatch

Ø Type of the object variable (known at compile time) that the method is
called on determines which version of method gets run

• The primary difference is when decision on which method to call
is made…
Ø Static dispatch (C#) decides at compile time
Ø Dynamic dispatch (Java) decides at run time

• Dynamic dispatch is slower
Ø In mid to late 90s, active research on how to decrease time

Oct 9, 2023 Sprenkle - CSCI209 34

What Will This Code Output?

Oct 9, 2023 Sprenkle - CSCI209 35

class Parent {
 public Parent() {}

 public void method1() {
 System.out.println("Parent: method1");
 }

 public void method2() {
 System.out.println("Parent: method2");
 method1();
 }
}

class Child extends Parent {
 public Child() {}

 public void method1() {
 System.out.println("Child: method1");
 }
}

public class DynamicDispatchExample {
 public static void main(String[] args) {
 Parent p = new Parent();
 Child c = new Child();

 p.method1();
 System.out.println("");

 c.method1();
 System.out.println("");

 p.method2();
 System.out.println("");

 c.method2();
 System.out.println("");
 }
}

Think on your own for 1 minute

What Will This Code Output?

Oct 9, 2023 Sprenkle - CSCI209 36

class Parent {
 public Parent() {}

 public void method1() {
 System.out.println("Parent: method1");
 }

 public void method2() {
 System.out.println("Parent: method2");
 method1();
 }
}

class Child extends Parent {
 public Child() {}

 public void method1() {
 System.out.println("Child: method1");
 }
}

public class DynamicDispatchExample {
 public static void main(String[] args) {
 Parent p = new Parent();
 Child c = new Child();

 p.method1();
 System.out.println("");

 c.method1();
 System.out.println("");

 p.method2();
 System.out.println("");

 c.method2();
 System.out.println("");
 }
}

Parent: method1

Child: method1

Parent: method2
Parent: method1

Parent: method2
Child: method1

Inheritance Rules: Access Modifiers

•Why?
•What would happen if a method in the parent

class is public but the child class’s method is
private?
Oct 9, 2023 Sprenkle - CSCI209 38

Access modifiers in child classes
• Can make access to child class less restrictive but

not more restrictive

Inheritance Rules: Access Modifiers

• If a public method could be overridden as a protected or
private method, child objects would not be able to respond to
the same method calls as parent objects

• When a method is declared public in the parent, the method
remains public for all that class’s child classes

• Remembering the rule: compiler error to override a method with
a more restricted access modifier
Oct 9, 2023 Sprenkle - CSCI209 39

Access modifiers in child classes
• Can make access to child class less restrictive but

not more restrictive

PREVENTING INHERITANCE

Oct 12, 2022 Sprenkle - CSCI209 40

Oct 12, 2022 Sprenkle - CSCI209 41

Preventing Inheritance: final Class
• If you have a class and you do not want child/derived

classes, you can define the class as final

•Examples of final class: java.lang.System and
java.lang.String

public final class Rooster extends Chicken {
 . . .
}

Oct 12, 2022 Sprenkle - CSCI209 42

Preventing Overriding: final Method
•If you don’t want child classes to override a

method, you can make that method final
class Chicken {
 . . .
 public final String getName() { . . . }
 . . .
}

Why would we want to make a method final?
What are possible benefits to us, the compiler, …?

Summary of Inheritance
•Remove repetitive code by modeling the “is-a”

hierarchy
ØMove “common denominator” code up the

inheritance chain
•Don’t use inheritance unless all inherited

methods make sense
•Use polymorphism

Oct 10, 2022 Sprenkle - CSCI209 43

Assignment 4
• Start of a simple video game

ØGame class to run
ØGamePiece is parent class of other moving objects

• Some less-than-ideal design
ØCan’t fix until see other Java structures
ØDon’t need to understand all of the code (yet), just some of it

• Create a Goblin class and a Treasure class
ØMove Goblin and Treasure

• Due next Wednesday before class
ØCan start on Parts 0-2 now (harder parts than part 3)

Oct 10, 2022 Sprenkle - CSCI209 44

