
Objectives
•Jar Files
•Classpaths
•Abstract Classes
•Interfaces
•Collections

Oct 9, 2024 Sprenkle - CSCI209 1

Oct 9, 2024 Sprenkle - CSCI209 2

Capture the Flag 3

Launch party: Sunday, 8-10 p.m.
• Meet, greet, eat
• Training and practice sessions
• No prior CTF experience

necessary

Main CTF: Sunday, 10 p.m. to
following Sunday at 10 p.m.

JAR FILES

Oct 9, 2024 Sprenkle - CSCI209 3

Jar (Java Archive) Files
•Archives of Java files
•Package code into a neat bundle to distribute

ØEasier, faster to download
ØEasier for others to use

•jar command: create, view, and extract Jar files
ØWorks similarly to tar

•Run jar file using java

Oct 9, 2024 Sprenkle - CSCI209 4

java -jar myapplication.jar

Jar/Tar Commands
•Common options:

•Common use:
Ø jar cfz code.jar.gz class_files_directory
Ø jar xfz code.jar.gz

Oct 9, 2024 Sprenkle - CSCI209 5

Option/
Operations Meaning

f The name of the archive file

c Create an archive file

x Extract the archive file

v Verbose

z Zip (compress)

t Table of contents (list contents)

Typical Use Case with Jar Files
•“I want to use this third-party (not part of Java

library) library in my code”
•You have a jar file of the code
•You then add the jar file to your classpath

Oct 9, 2024 Sprenkle - CSCI209 6

CLASSPATH

Oct 9, 2024 Sprenkle - CSCI209 7

Classpath
•Tells the compiler or JVM where to look for user-

defined classes and packages (jar files)
ØOften when using third-party libraries

•Similar to PYTHONPATH
•Typically know it needs to be set when there are

“Class not found” error messages in your code
but you have the appropriate import

Oct 9, 2024 Sprenkle - CSCI209 8

Setting the Classpath
•Can specify classpath in command line

•Can specify the classpath environment variable
ØEdit your .bash_profile (or similar) OR
ØSet in terminal

Oct 9, 2024 Sprenkle - CSCI209 9

javac -cp path/to/myjavaclasses MyClass.java
java –cp path/to/myjavaclasses MyClass

CLASSPATH=$CLASSPATH:path/to/myjavaclasses
echo $CLASSPATH Current value of CLASSPATH

Can be .class files or jar files

Review
• How do we make a class inherit from a

parent class?
• How does a class refer to its parent

class?
• What does a class inherit from its parent

class?
Ø What is not inherited?

• What does it mean for a class to be
final?
Ø For a method to be final?

• What are the access modifiers, ordered
from least restrictive to most restrictive?
Ø What should you consider to know which

modifier to use when you make a field? A
method?

• How does Java decide which method to
call on an object?
Ø Example: chicken[1].feed();
Ø Give name of how decision is made and

explain how it works
• What is polymorphism?
• Not from last class, before that:

Ø How can we check that an object variable is
a certain type?

Ø How can we specify that an object variable
has a different type (e.g., a derived type)?

• Review from Python
Ø What are abstract classes and interfaces?
Ø How are they useful?

Oct 9, 2024 Sprenkle - CSCI209 10

A Scenario
•We have a Customer Service Driver program
•It currently uses FIFO to schedule customers
•Depending on the circumstances, we may want to

use different algorithms to determine the service
order, e.g.,
ØHighestPayingFirst
ØCriticalProblemFirst
ØShortestJobFirst

Oct 9, 2024 Sprenkle - CSCI209 11

Consider Original Version

• FIFO implementation
• If you wanted to change the algorithm, how much would

you need to change? What if later you wanted to change
back to FIFO or you wanted to be able to change between
algorithms frequently?
ØConsider what is common among the algorithms

Oct 9, 2024 Sprenkle - CSCI209 12

while(agent.isAvailable()) {
 if(customerList.size() > 0) {
 Customer next = customerList.remove(0);
 agent.handle(next);
 }
}

Design Solution
•Interface CustomerServiceOrder

Øpublic Customer getNextCustomer();
Øpublic boolean hasNext();

•Driver program snippet

Oct 9, 2024 Sprenkle - CSCI209 13

CustomerServiceOrder customerOrder = …;
while(agent.isAvailable()) {
 if(customerOrder.hasNext()) {
 Customer next = customerOrder.getNextCustomer();
 agent.handle(next);
 }
}

Design Solution
• Classes adhere to (i.e., implement) the interface, implementing

different algorithms
ØFIFOOrder
ØHighestPayingFirstOrder
ØCriticalProblemFirstOrder
ØShortestJobFirstOrder

• Assign objects of any of these types to the interface variable

Oct 9, 2024 Sprenkle - CSCI209 14

CustomerServiceOrder customerOrder = new FIFOOrder();
while(agent.isAvailable()) {
 if(customerOrder.hasNext()) {
 Customer next = customerOrder.getNextCustomer();
 agent.handle(next);
 }
}

Easily change program behavior with only one change in code with polymorphism

Interfaces and Abstract Classes

Oct 9, 2024 Sprenkle - CSCI209 15

Provide abstraction
à Makes code easier to change, extend, maintain

Note it’s not that they make code easier to implement or understand.
You need some more experience on that front.

INTERFACES

Oct 9, 2024 Sprenkle - CSCI209 16

Oct 9, 2024 Sprenkle - CSCI209 17

Interfaces
•Pure specification, no implementation
ØA set of requirements for classes to conform to

•Classes can implement one or more interfaces

Oct 9, 2024 Sprenkle - CSCI209 18

Interface Definitions
•Example: define an interface for an object that is

capable of moving:

•Interface methods are public by default
Ø Do not need to specify methods as public

public interface Movable {
 void move(double x, double y);
}

Oct 9, 2024 Sprenkle - CSCI209 19

Constants in an Interface
• If a variable is specified in an interface, it is automatically a

constant:
Øpublic static final variable

• Example: An object that implements Powered interface has a
constant SPEED_LIMIT defined

public interface Powered extends Movable {
double SPEED_LIMIT = 95;

 double milesPerGallon();
}

Oct 9, 2024 Sprenkle - CSCI209 20

Interface Definitions and Inheritance
•Can extend interfaces
ØAllows a chain of interfaces that go from general to

more specific

•Example:

ØA class that implements the Powered interface must
have a milesPerGallon and move method

public interface Powered extends Movable {
 double milesPerGallon();
}

Car.java

Class Implements Interface
•Class needs to implement all methods declared in

the interface

Oct 9, 2024 Sprenkle - CSCI209 21

public class Car implements Powered { …
 public double milesPerGallon() {
 return mpg;
 }

 public void move(double x, double y) {
 xcoord += x;
 ycoord += y;
 }
…

Car.java

Oct 9, 2024 Sprenkle - CSCI209 22

Multiple Interfaces
•A class can implement multiple interfaces
ØMust fulfill the requirements of each interface

•Recall: NOT possible with inheritance
ØA class can only extend (or inherit from) one class

public final class String implements
 Serializable, Comparable, CharSequence { …

Oct 9, 2024 Sprenkle - CSCI209 23

Testing for Interfaces
• Can also use the instanceof operator to see if an object

implements an interface
Øe.g., to determine if an object is movable

if (obj instanceof Movable) {
 // runs if obj is an object variable of a class
 // that implements the Movable interface
}
else {
 // runs if obj does not implement the interface
}

Interface Object Variables
•Can use an object variable to refer to an object of

any class that implements an interface
•Using this object variable, can only access the

interface’s methods
•For example…

public void aMethod(Object obj) {
…
if (obj instanceof Movable) {
 Movable mover = (Movable) obj;
 mover.move(x, y);
}

}
Oct 9, 2024 Sprenkle - CSCI209 24

Comparable Interface
•Implemented by String and many other classes
•Uses Generics!
•Interface declaration:

•Declared method:

Oct 9, 2024 Sprenkle - CSCI209 25

public interface Comparable<T>

int compareTo(T o)
The type it compares

Oct 9, 2024 Sprenkle - CSCI209 26

Comparable Interface API/Javadoc
•Specifies what the compareTo method should do
•Says which Java library classes implement
Comparable

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Comparable.html

java.lang.Comparable

• A class that implements Comparable must have a
method named compareTo()

• Returns:
ØReturn a negative integer if this object is less than the object

passed as a parameter
ØReturn a positive integer if this object is greater than the object

passed as a parameter
ØReturn a 0 if the two objects are equal

Oct 9, 2024 Sprenkle - CSCI209 27

public interface Comparable<T> {
 int compareTo(T other);
}

Oct 9, 2024 Sprenkle - CSCI209 28

Example Use of an Interface
•Recall: Arrays.sort(array)

ØArrays.sort sorts arrays of any Object class that
implements the Comparable interface
• Overloaded method, so can also pass in arrays of primitive types

Oct 9, 2024 Sprenkle - CSCI209 29

Implementing an Interface with Generics
•In the class definition, specify that the class will

implement the interface and specify its type it
will accept/operate on.

public class Chicken implements Comparable<Chicken>

Generics in Comparable
public int compareTo(Chicken other) {
 if (height < other.getHeight())
 return -1;
 if (height > other.getHeight())
 return 1;
 return 0;
}

Oct 9, 2024 Sprenkle - CSCI209 30

With Generics

Chicken.java

public int compareTo(Object otherObject) {
 if(! (otherObject instanceof Chicken)) {
 return 1;
 }
 Chicken other = (Chicken) otherObject;
 if (height < other.getHeight())
 return -1;
 if (height > other.getHeight())
 return 1;
 return 0;
}

Without Generics

Oct 9, 2024 Sprenkle - CSCI209 31

Interface Summary
•Contain only object (not class) methods
•All methods are public
ØImplied if not explicit

•Fields are constants that are static and final
•A class can implement multiple interfaces
ØSeparated by commas in definition

Oct 9, 2024 Sprenkle - CSCI209 32

Benefits of Interfaces
•Abstraction
ØSeparate the interface from the implementation

•Allow easier type substitution
•Classes can implement multiple interfaces

ABSTRACT CLASSES

Oct 9, 2024 Sprenkle - CSCI209 33

Oct 9, 2024 Sprenkle - CSCI209 34

Abstract Classes
•Classes that are not fully implemented are

abstract classes
ØOften: some methods defined, others not defined

•Partial implementation
Øpublic abstract class ZooAnimal

•Declared but not implemented methods are
marked as abstract

public abstract void exercise(Environment env);

Oct 9, 2024 Sprenkle - CSCI209 35

Abstract Classes
•An abstract class cannot be instantiated
Øi.e., can’t create an object of that class
ØBut can have a constructor!

•Child class of an abstract class can only be
instantiated if it overrides and implements every
abstract method of parent class
ØIf child class does not override all abstract methods, it

is also abstract

Abstract Classes
•static, private, and final methods cannot be
abstract
ØBecause cannot be overridden by a child class

•final class cannot contain abstract methods
ØBecause class cannot be inherited

•A class can be abstract even if it has no abstract
methods
ØUse when implementation is incomplete and is meant to serve

as a parent class for class(es) that complete the
implementation

•Can have array of objects of abstract class
ØJVM will use dynamic dispatch for methods

Oct 9, 2024 Sprenkle - CSCI209 36

Oct 9, 2024 Sprenkle - CSCI209 37

Summary: Defining Abstract Classes
➨Define a class as abstract when have partial

implementation
• Typically used as a base class for a bunch of classes

Oct 9, 2024 Sprenkle - CSCI209 38

Comparing Concreteness

Concrete Class

Abstract Class

Interface In
cr

ea
se

 in
 a

bs
tr

ac
tio

n,

re
si

lie
nc

e
to

 c
ha

ng
e

Comparing Interfaces and Abstract Class

Interfaces

• No implementation
• Any class can use

Ø (b/c classes can implement multiple
interfaces)

• May need to implement methods
multiple times

• Adding a method to interface will
break classes that implement
interface

Abstract Classes

• Contain partial implementation
• Child classes can’t extend/subclass

multiple classes
• Can add non-abstract methods

without breaking child classes

Oct 9, 2024 Sprenkle - CSCI209 40

Oct 9, 2024 Sprenkle - CSCI209 41

One Option: Use Both!
•Define interface, e.g., MyInterface
•Define abstract class, e.g.,
AbstractMyInterface
ØImplements interface
ØProvides implementation for some methods

Abstract Classes and Interfaces
•Important structures in Java
ØMake code easier to change

•Will return to/apply these ideas throughout the
course

•Concepts are used in many languages besides
Java

Oct 9, 2024 Sprenkle - CSCI209 42

COLLECTIONS

Oct 9, 2024 Sprenkle - CSCI209 43

Collections
•Sometimes called containers
•Group multiple elements into a single unit
•Store, retrieve, manipulate, and communicate

aggregate data
•Represent data items that form a natural group

ØPoker hand (a collection of cards)
ØMail folder (a collection of messages)
ØTelephone directory (a mapping of names to phone

numbers)

Oct 9, 2024 Sprenkle - CSCI209 44

Java Collections Framework
•Unified architecture for representing and

manipulating collections
•More than arrays
ØMore flexible, functionality, dynamic sizing

•In java.util package

Oct 9, 2024 Sprenkle - CSCI209 45

Collections Framework
• Interfaces

Ø Abstract data types that represent collections
Ø Collections can be manipulated independently of implementation

• Implementations
Ø Concrete implementations of collection interfaces
Ø Reusable data structures

• Algorithms
Ø Methods that perform useful computations on collections, e.g., searching

and sorting
Ø Reusable functionality
Ø Polymorphic: same method can be used on many different implementations

of collection interface

Oct 9, 2024 Sprenkle - CSCI209 46

Core Collection Interfaces
•Encapsulate different types of collections

Oct 9, 2024 Sprenkle - CSCI209 47

LISTS

Oct 9, 2024 Sprenkle - CSCI209 48

List Interface
•An ordered collection of elements
•Can contain duplicate elements
•Has control over where objects are stored in the

list

Oct 9, 2024 Sprenkle - CSCI209 49

List Interface
•boolean add(<E> o)

ØReturns boolean so that List can refuse some elements
• e.g., refuse adding null elements

•<E> get(int index)
ØReturns element at the position index
ØDifferent from Python: no shorthand

• Can’t write list[pos]
•int size()

ØReturns the number of elements in the list
• And more!

Øcontains, remove, toArray, …

Oct 9, 2024 Sprenkle - CSCI209 50

List Interface
•boolean add(<E> o)

ØReturns boolean so that List can refuse some elements
• e.g., refuse adding null elements

•<E> get(int index)
ØReturns element at the position index
ØDifferent from Python: no shorthand

• Can’t write list[pos]
•int size()

ØReturns the number of elements in the list
• And more!

Øcontains, remove, toArray, …

Oct 9, 2024 Sprenkle - CSCI209 51

<E>: Generics!

Common List Implementations
•ArrayList

ØResizable array
•LinkedList

Oct 9, 2024 Sprenkle - CSCI209 52

When should you use one vs the other?

Common List Implementations
•ArrayList

ØResizable array
ØUsed most frequently
ØFast

•LinkedList
ØUse if adding elements to

ends of list
ØUse if often delete from

middle of list
ØImplements Deque and

other methods so that it
can be used as a stack or
queue

Oct 9, 2024 Sprenkle - CSCI209 53
How would you find the other implementations of List?

API Notes
•ArrayList and LinkedList extend from
AbstractList, which implements List
interface

Oct 9, 2024 Sprenkle - CSCI209 54

GENERICS

Oct 9, 2024 Sprenkle - CSCI209 55

Generic Collection Interfaces
• Declaration of the Collection interface:

Ø<E> means interface is generic for element class
• When declare a Collection, specify type of object it contains

ØAllows compiler to verify that object’s type is correct
• Reduces errors at runtime

• Example, a hand of cards:

Oct 9, 2024 Sprenkle - CSCI209 56

List<Card> hand = new ArrayList<Card>();

Type
parameter

Always declare type
contained in collections

public interface Collection<E> …

List<Card> hand = new ArrayList<>();Added in Java 7:

Comparing: Before & After Generics
•Before Generics

Oct 9, 2024 Sprenkle - CSCI209 57

List myList = new LinkedList();
myList.add(new Card(4, "clubs"));
…
Card x = (Card) myList.get(0);

• List of Objects
• Need to cast to the

desired child class

Comparing: Before & After Generics
•Before Generics

•After Generics

Oct 9, 2024 Sprenkle - CSCI209 58

List myList = new LinkedList();
myList.add(new Card(4, "clubs"));
…
Card x = (Card) myList.get(0);

List<Card> myList = new LinkedList<>();
myList.add(new Card(4, "clubs"));
…
Card x = myList.get(0);

ü Improved readability and robustness

• List of Objects
• Need to cast to the

desired child class

• If you try to add
not-a-Card, compiler
gives an error

Types Allowed with Generics
•Can only contain Objects, not primitive types

•Autoboxing and Autounboxing to the rescue! (for
next time!)

Oct 9, 2024 Sprenkle - CSCI209 59

Assignment 3
•Start of a simple video game
ØGame class to run
ØGamePiece is parent class of other moving objects

•Can complete everything now
•Due Wednesday before class

Oct 9, 2024 Sprenkle - CSCI209 60

