
Objectives
•Collections Framework
•Generics
•Wrapper classes
•Autoboxing, autounboxing

Oct 16, 2023 Sprenkle - CSCI209 1

Iteration over Code: Assignment 4
• Demonstrates typical design/implementation process

Ø Start with original code design
• Inheritance from GamePiece class

Ø Realize it could be designed better
• Make GamePiece class abstract
• Use an array of GamePiece objects
• Easier to add new functionality to Game

• Major part of problem-solving is figuring out how to break problem into
smaller pieces

• Reminders
Ø Heed my warnings
Ø Start simple, small (e.g., Goblin only moves left)

Oct 16, 2023 Sprenkle - CSCI209 2

Review
• What are jar files? How are they

used?
• What is the classpath?
• How do we specify that a

class/method cannot be
subclassed/overridden, respectively?

• What is the syntax for Generics? How
are they used?

• Compare and contrast abstract classes
and interfaces

• True or False (with explanation):
Ø If you extend an abstract class, you

have to override all abstract methods.
Ø You can instantiate an abstract class
Ø You can have an object variable of an

abstract class
Ø You can have an object variable of an

interface
• When should a class be abstract?
• When should you create/use an

interface?
• 112 review: what are lists, sets, and

dictionaries?

Oct 16, 2023 Sprenkle - CSCI209 3

Review: Interfaces vs Abstract Classes

Interfaces

• Only specification (no
implementation)

• Any class can implement
Ø Because classes can implement multiple

interfaces

• Implementing methods multiple times
• Adding a method to interface will

break classes that implement that
interface

Abstract Classes

• Contain partial implementation
• Child classes can’t extend/subclass

multiple classes
• Add non-abstract methods without

breaking subclasses

Oct 16, 2023 Sprenkle - CSCI209 4

Review: Collections Framework
• Interfaces

Ø Abstract data types that represent collections
Ø Collections can be manipulated independently of implementation

• Implementations
Ø Concrete implementations of collection interfaces
Ø Reusable data structures

• Algorithms
Ø Methods that perform useful computations on collections, e.g., searching

and sorting
Ø Reusable functionality
Ø Polymorphic: same method can be used on many different implementations

of collection interface

Oct 16, 2023 Sprenkle - CSCI209 5

List Interface
•boolean add(<E> o)

ØReturns boolean so that List can refuse some elements
• e.g., refuse adding null elements

•<E> get(int index)
ØReturns element at the position index
ØDifferent from Python: no shorthand

• Can’t write list[pos]
•int size()

ØReturns the number of elements in the list
• And more!

Øcontains, remove, toArray, …

Oct 16, 2023 Sprenkle - CSCI209 6

<E>: Generics!

Common List Implementations
•ArrayList

ØResizable array
•LinkedList

Oct 16, 2023 Sprenkle - CSCI209 7
How would you find the other implementations of List?

When should you use one vs the other?

Common List Implementations
•ArrayList

ØResizable array
ØUsed most frequently
ØFast

•LinkedList
ØUse if adding elements to

ends of list
ØUse if often delete from

middle of list
ØImplements Deque and

other methods so that it
can be used as a stack or
queue

Oct 16, 2023 Sprenkle - CSCI209 8

API Notes
•ArrayList and LinkedList extend from
AbstractList, which implements List
interface

Oct 16, 2023 Sprenkle - CSCI209 9

Implementation vs. Interface

•Preferred Style:
1. Choose an implementation
2. Assign collection to variable of corresponding interface

type

•Methods should accept interfaces—not
implementations
Oct 16, 2023 Sprenkle - CSCI209 10

Implementation choice only affects performance

Interface variable = new Implementation();
Example: List<Card> hand = new ArrayList<>();

Why is this the preferred style?
public void method(Interface var) {…}

Implementation vs. Interface

• Preferred Style:
1. Choose an implementation
2. Assign collection to variable of corresponding interface type

• Why?
ØProgram does not depend on a given implementation’s

methods
• Access only using interface’s methods

ØProgrammer can change implementations
• Performance concerns or behavioral details

Oct 16, 2023 Sprenkle - CSCI209 11

Implementation choice only affects performance

Design Principle: Program to an Interface
•(Not to an implementation)
• Implementation choice only affects performance
•Methods should accept interfaces—not

implementations

•Makes code more resilient to change
ØCan change implementation and not affect rest of code

because … you programmed to the interface

Oct 16, 2023 Sprenkle - CSCI209 12

public void method(Interface var) {…}

GENERICS

Oct 16, 2023 Sprenkle - CSCI209 13

Generic Collection Interfaces
• Declaration of the Collection interface:

Ø<E> means interface is generic for element class
• When declare a Collection, specify type of object it contains

ØAllows compiler to verify that object’s type is correct
• Reduces errors at runtime

• Example, a hand of cards:

Oct 16, 2023 Sprenkle - CSCI209 14

List<Card> hand = new ArrayList<Card>();

Type
parameter

Always declare type
contained in collections

public interface Collection<E> …

List<Card> hand = new ArrayList<>();Added in Java 7:

Comparing: Before & After Generics
•Before Generics

Oct 16, 2023 Sprenkle - CSCI209 15

List myList = new LinkedList();
myList.add(new Card(4, "clubs"));
…
Card x = (Card) myList.get(0);

• List of Objects
• Need to cast to the

desired child class

Comparing: Before & After Generics
•Before Generics

•After Generics

Oct 16, 2023 Sprenkle - CSCI209 16

List myList = new LinkedList();
myList.add(new Card(4, "clubs"));
…
Card x = (Card) myList.get(0);

List<Card> myList = new LinkedList<>();
myList.add(new Card(4, "clubs"));
…
Card x = myList.get(0);

ü Improved readability and robustness

• List of Objects
• Need to cast to the

desired child class

• If you try to add
not-a-Card, compiler
gives an error

Comparing: Before & After Generics
•Before Generics

•After Generics

Oct 16, 2023 Sprenkle - CSCI209 17

List myList = new LinkedList();
myList.add(new Card(4, "clubs"));
…
Card x = (Card) myList.get(0);

List<Card> myList = new LinkedList<>();
myList.add(new Card(4, "clubs"));
…
Card x = myList.get(0);

This version is more similar
to Python because Python
doesn’t have static typing.
If you get an object out of a
list that isn’t the type you
expect, it’s a runtime error.

Types Allowed with Generics
•Can only contain Objects, not primitive types

•Autoboxing and Autounboxing to the rescue!

Oct 16, 2023 Sprenkle - CSCI209 18

WRAPPER CLASSES

Oct 16, 2023 Sprenkle - CSCI209 19

Wrapper Classes
•Sometimes need an instance of an Object
ØEx: to store in Lists and other Collections

•Each primitive type has a Wrapper class
ØExamples: Integer, Double, Long, Character, …

•Include functionality of parsing their respective
data types

Oct 16, 2023 Sprenkle - CSCI209 20

int x = 10;
Integer y = Integer.valueOf(x);
Integer z = Integer.valueOf("10");

Wrapper Classes
•Autoboxing – automatically create a wrapper object

•Autounboxing – automatically extract a primitive type

Oct 16, 2023 Sprenkle - CSCI209 21

Integer x = Integer.valueOf(11);
int y = x.intValue();
int z = x; // implicitly, x is x.intValue();

Integer y = 11; // implicitly 11 converted to Integer,
 // e.g., Integer.valueOf(11)

Converts right side to whatever is needed on the left

Effective Java: Unnecessary Autoboxing

Oct 16, 2023 Sprenkle - CSCI209 22

Long sum = 0L;
for (long i=0; i < Integer.MAX_VALUE; i++) {
 sum += i;
}
System.out.println(sum);

Autobox.java

• Can you find the inefficiency from object creation?
• How can you fix the inefficiency?

Effective Java: Unnecessary Autoboxing

Oct 16, 2023 Sprenkle - CSCI209 23

Long sum = 0L;
for (long i=0; i < Integer.MAX_VALUE; i++) {
 sum += i;
}
System.out.println(sum);

Autobox.java

• How can you fix the inefficiency?

Constructs 231 Long instances

AutoboxFixed.java

Effective Java: Unnecessary Autoboxing

Oct 16, 2023 Sprenkle - CSCI209 24

Long sum = 0L;
for (long i=0; i < Integer.MAX_VALUE; i++) {
 sum += i;
}
System.out.println(sum);

Autobox.java

Constructs 231 Long instances

AutoboxFixed.java

Lessons:
•Prefer primitives to boxed primitives
•Watch for unintentional autoboxing

Traversing Collections: For-each Loop
•For-each loop:

•Valid for all Collections
ØMaps (and its implementations) are not
Collections
•But, Map’s keySet() is a Set and values() is a
Collection

Oct 16, 2023 Sprenkle - CSCI209 25

for (Object o : collection)
 System.out.println(o);

Or whatever data type is appropriate

Discussion of Deck Class

Oct 16, 2023 Sprenkle - CSCI209 26

cards.Deck.java

Looking Ahead
•Assignment 4 Due Before Class Wednesday

Oct 16, 2023 Sprenkle - CSCI209 27

