
Objectives
•Planning
•Team Work

Nov 17, 2023 Sprenkle - CSCI209 1

Review: Picasso
•It’s okay to be a little intimidated
•Let that motivate you
•But believe that you can successfully tackle the

project

Nov 17, 2023 Sprenkle - CSCI209 2

Review
•What is the MVC design pattern? How does it

relate to the Picasso project?
•What are the major components of the existing

Picasso code base?
•What parts of project need to be completed?
•(Rhetorical) Who are your teammates?

Nov 17, 2023 Sprenkle - CSCI209 3

Picasso Architecture

Nov 17, 2023 Sprenkle - CSCI209 4

Picasso
Language Interpreter

GUI

PixmapModel

View-
Controller

Picasso Architecture

Nov 17, 2023 Sprenkle - CSCI209 5

GUI

PixmapModel

View-
Controller

Lexical
Analyzer

Semantic
Analyzer

Expression
Tree

TokenTokenTokens

Picasso
Language Parser

Picasso Expression

Review: Picasso GUI

Nov 17, 2023 Sprenkle - CSCI209 6

ButtonPanel

F r a m
e

Canvas
(displays Pixmap)

JButton

Picasso’s GUI uses classes from two
main Java packages:
• Abstract Windowing Toolkit: java.awt
• Swing: javax.swing

Review: Interpreting the Picasso Language

Nov 17, 2023 Sprenkle - CSCI209 7

Lexical
Analyzer

Semantic
Analyzer

Error

Error

Expression
Tree

Interpreter

Picasso
Expression

TokenTokenTokens

OR

OR

Evaluation of
expression

Draw on
canvas

tokens.*

parser.*
expressions.*

Tokenizer,
Java’s StreamTokenizer

Code Review: Lexical Analysis
•Process
Øpicasso.parser.Tokenizer
Øpicasso.parser.tokens.TokenFactory

•Output:
Øpicasso.parser.tokens.*

Nov 15, 2023 Sprenkle - CSCI209 8FloorToken

Code Review: Semantic Analysis
•Process
Øpicasso.parser.ExpressionTreeGenerator
Øpicasso.parser.SemanticAnalyzer
Øpicasso.parser.*Analyzer

•Output
Øpicasso.parser.language.expressions.*

Nov 15, 2023 Sprenkle - CSCI209 9FloorAnalyzer

Code Review: Evaluation
•Process
Øpicasso.parser.language.
ExpressionTreeNode

•Output:
Øpicasso.parser.language.expressions.
RGBColor

•Displayed in PixMap on Canvas
Nov 15, 2023 Sprenkle - CSCI209 10Floor

Review: Interpreting the Picasso Language

Nov 17, 2023 Sprenkle - CSCI209 11

Lexical
Analyzer

Semantic
Analyzer

Expression
Tree

Interpreter

Picasso
Expression

TokenTokenTokens

Floor

Y

Evaluation of
expression

Draw on
canvas

"floor(y)"
<floor>
<lparen>
<id:y>
<rparen>

Interpreting the Picasso Language

Nov 17, 2023 Sprenkle - CSCI209 12

Lexical
Analyzer

Semantic
Analyzer

Expression
Tree

Interpreter

Picasso
Expression

TokenTokenTokens

Mult

X Y

Evaluation of
expression

Draw on
canvas

"x*y"
<id:x>

 <mult>
 <id:y>

Evaluator: Expression Evaluation

Nov 17, 2023 Sprenkle - CSCI209 13

Expression
TreeNode evaluate(double x, double y) RGBColor

Pixmap

(x,y) coordinates

Evaluate expression at each x, y coordinate
Returns the RGBColor that should be displayed
at that coordinate

What Steps Need To Be Completed?
• Model: Images

Ø API
Ø State

• GUI
Ø Expression user interface

(interactive)
Ø Open expression files (batch)
Ø Call Picasso parser/interpreter
Ø Error handling

• Picasso interpreter
Ø Parse expressions (functions,

operations, variables, …)
• Handle errors appropriately

Ø Evaluate expressions
• Manipulate canvas appropriately

• Extensions

• TESTING!

Nov 17, 2023 Sprenkle - CSCI209 14

What Classes are Dependent on Each Other?
•How tightly coupled are they?

Nov 17, 2023 Sprenkle - CSCI209 15

Dependencies
•Interpreter classes (tokens, analyzer, expression)

are very dependent on each other
•Need to hook GUI to Interpreter
•Need to hook Image/Canvas to GUI and

Interpreter
•Can test without other pieces but easier and

more satisfying to see results displayed
Nov 17, 2023 Sprenkle - CSCI209 16

FACTORY DESIGN PATTERN

Nov 17, 2023 Sprenkle - CSCI209 17

Design Pattern: Factory Methods
•Allows creating objects without specifying exact

(concrete) class of created object
•Often used to refer to any method whose main

purpose is creating objects
•How it works:

1. Define a method for creating objects
2. Child classes override method to specify the derived

type of product that will be created
Nov 17, 2023 Sprenkle - CSCI209 18

Factory Method Pattern

Nov 17, 2023 Sprenkle - CSCI209 19

Product Creator
factoryMethod()
anOperation()

ConcreteProduct ConcreteCreator
factoryMethod()

UML Class Diagram

association

interface abstract class

implementationimplementation

Client classes interact with the interfaces

Dependency Inversion Principle

Nov 17, 2023 Sprenkle - CSCI209 20

Depend upon Abstractions

“Inversion” from the way you think

Using Reflection in Java
•Reflection allows us to create objects of a class

using the name of the class
•Example adapted from MutantMaker:

Nov 17, 2023 Sprenkle - CSCI209 21

public static void initMutantMaker() {
mutants = new Mutant[numMutants];
mutants[0] = new Wolverine();
for (int i = 1; i < numMutants; i++) {

Class<?> mutantClass;
try {

mutantClass = Class.forName("mutants.Mutant"+ i);
mutants[i] = (Mutant)
 mutantClass.getDeclaredConstructor().newInstance();

} catch (Exception e) {
 e.printStackTrace();
}

}
}

Using Reflection in Java
• Can create objects of a class through the name of the class
• Used in SemanticAnalyzer

ØGets list of functions
• Read from conf/functions.conf

ØMaps a token to the class responsible for parsing that type of
token

ØWhen SemanticAnalyzer sees that token, calls the respective
analyzer to parse

ØExample: FloorToken maps to the FloorAnalyzer
• FloorAnalyzer pops the Floor token off the stack and then parses the

(one) parameter for the floor function

Nov 17, 2023 Sprenkle - CSCI209 22

Process of Adding Cosine Function
to the Picasso Language
• Add function name to functions.conf
• Create a token for the cosine function

ØSame prefix as new function, e.g., CosToken.java
• Create a semantic analyzer for the function with same

prefix as function, e.g., CosAnalyzer.java
ØAnalyzer class implements
SemanticAnalyzerInterface,
returns an instance of ExpressionTreeNode

• Create a child of ExpressionTreeNode for function:
Cosine.java

Nov 17, 2023 Sprenkle - CSCI209 23

(in given code)

Name/prefix must match for all but ETN

Process of Adding Cosine Function
to the Picasso Language
• Add function name to functions.conf
• Create a token for the cosine function

ØSame prefix as new function, e.g., CosToken.java
• Create a semantic analyzer for the function with same

prefix as function, e.g., CosAnalyzer.java
ØAnalyzer class implements
SemanticAnalyzerInterface,
returns an instance of ExpressionTreeNode

• Create a child of ExpressionTreeNode for function:
Cosine.java

Nov 17, 2023 Sprenkle - CSCI209 24

(in given code)

Using Java reflection to
map tokens to analyzers.
(How would we do this

otherwise?)

Picasso Code:
ReferenceForExpressionEvaluations

Nov 27, 2023 Sprenkle - CSCI209 25

…
PLUS {

public RGBColor evaluate(RGBColor left, RGBColor right) {
double red = left.getRed() + right.getRed();
double green = left.getGreen() + right.getGreen();
double blue = left.getBlue() + right.getBlue();
return new RGBColor(red, green, blue);

}
},
…

What are left and right referring to?

This implementation (from the “old” version of the code) is different from
what we will have in our code. But, it is a helpful reference.

Extensions
•Extensions could affect your code design
ØWhere could change à abstraction

•When does your team need to decide?
ØTechnically, not until the final implementation

deadline
•But, see above

Nov 17, 2023 Sprenkle - CSCI209 26

Planning for Preliminary Implementation
• Goal is to have you do enough that you’ll see issues with an initial design

you create and adjust
• Implementation requirement (see project description page for more)

Ø Input an expression interactively that includes at least one binary operator
and display an image from the resulting expression

Ø Tag the version in Git
• Requirement involves a lot of different pieces

Ø Don’t go too far in breadth, more depth
• See design issues sooner

Ø “We need method/functionality X in class Y”
• Invest in your team

Ø If you understand, help your teammates understand

Nov 17, 2023 Sprenkle - CSCI209 27

Planning: Tasks/Steps
•Testing: focus on methods’ input (parameters),

what is returned
•Think about iterative development
ØNot recommended: write all the

tokens/parsers/expressions first
ØWhat is an appropriate process for this project?

•Decide on APIs where there are dependencies
ØParameters and what is returned

Nov 17, 2023 Sprenkle - CSCI209 28

Team Collaboration/Planning
•An hour of thinking/design will save hours of coding
•Given code is not perfect code

Ø(Most code is not perfect code)
ØYou can change code but make sure you understand it first

•Design GUI on paper/white board first before trying
to implement

•You can write some tests first!
ØHelps to frame your implementation

Nov 27, 2023 Sprenkle - CSCI209 29

Planning: Division of Tasks
•Work in subgroups?
•Consider how not to be loosely coupled
ØReminder: Use git branches!

•Consider best # of people per part
ØLikely will keep changing as work gets done and you

learn your design
•Not recommended: Person X does all the testing
ØPerhaps pair people up to write tests for each other

Nov 17, 2023 Sprenkle - CSCI209 30

Teams Work Best When They are Interdependent

•In code terms, we want loose coupling
ØDepend on each other but don’t depend on their details

•Consider
ØAre you allowing your team to truly be interdependent?
ØWho might be you be ignoring?
ØWho might be allowing themselves to feel inadequate?
ØHow do you show appreciation for each other and

yourself?
Nov 17, 2023 Sprenkle - CSCI209 31

Review: Collaboration
•What is our workflow in Git when collaborating?
•What did you like about how your team worked

together on previous project?
ØWhat didn’t you like?

Nov 17, 2023 Sprenkle - CSCI209 32

Review: Collaboration:
Workflow – Seeking Feedback
1. Pull to get the most recent changes to the repository
2. Create a branch from main for your work

Ø Commit periodically
Ø Write descriptive comments so your team members know what you did and why

3. Push your branch
4. On GitHub, open a Pull Request on your branch

Ø Discuss and review potential changes – can still update
Ø You can tag your teammates to let them know that you’ve completed your work

5. Merge pull request into main branch
6. In Eclipse, pull main

Ø Merge into your branch or create a new branch from main

Nov 17, 2023 Sprenkle - CSCI209 33

Collaboration Models
Good

• Team physically (or over Zoom or
similar) works all together or in
subteams

• Division of labor is clear
Ø Keep track of tasks, what has been

completed in a document
Ø Agree on team deadlines

• Good, frequent communication
Ø Be a sounding board for your teammate

even if you don’t understand everything
they are working on

Bad

• Multiple people trying to do the same
task
Ø Overwriting each other’s code

• Everyone working in the main branch
• Make a plan as a team, then someone

goes rogue
• Asking for help too late

Nov 17, 2023 Sprenkle - CSCI209 34

Student Questions
•Any code we shouldn’t change?
ØDon’t change anything until you understand it well
ØThere is likely code that you won’t change but

depends on your extensions
•What if our design isn’t perfect?
ØIt won’t be
ØBUT try to get it to pretty good, especially before the

intermediate deadline
Nov 17, 2023 Sprenkle - CSCI209 35

Implementation/Code Questions?

Nov 17, 2023 Sprenkle - CSCI209 36

Secondary Goals
•You’re going to figure out that your final design

isn’t perfect—maybe not even good!
ØFix smaller and/or more critical things

•Refactoring!

ØNote larger things
•analysis/post-mortem due at end of finals week

Nov 17, 2023 Sprenkle - CSCI209 37

Good judgment comes from experience.
How do you get experience?

Bad judgment works every time.

Looking Ahead
•Friday after Thanksgiving, preliminary

implementation deadline
ØDemo in class

Nov 17, 2023 Sprenkle - CSCI209 38

