
Objectives
•Picasso!

Dec 4, 2023 Sprenkle - CSCI209 1

Review: Typical Trajectory of Projects

Dec 4, 2023 Sprenkle - CSCI209 2

This code is too complex!
I can’t understand this/do this project!

I am starting to get it.
I have the mental model for the code base

I am confident enough to write a little code

I get it! I am writing code
and redesigning as necessary

Time committed to project

U
nd

er
st

an
di

ng
/c

on
fid

en
ce Hopefully, you’re here!

Preliminary deadline retrospective
(starting early, testing)

Review
1. What is a design pattern?

ØWhat design patterns have we discussed?
• What problems do they solve?

ØWhat design patterns are used in the Picasso project?
• (This could vary by team)

2. Why do we need to convert the input to postfix?
3. What is our git workflow?
4. What is a merge conflict? How do you resolve it?

Dec 4, 2023 Sprenkle - CSCI209 3

Review: Design Pattern

•Not a finished design that can be transformed
directly into code

•Description or template for how to solve a problem
that can be used in many different situations
Ø“Experience reuse”, rather than code reuse

Dec 4, 2023 Sprenkle - CSCI209 4

General reusable solution to a commonly
occurring problem in software design

Design Pattern: Strategy
•Defines a family of algorithms, encapsulates each

one, and makes them interchangeable
•Allows algorithm/behavior to vary independently

of clients that use it
ØAllows behavior changes at runtime

•Design Principle:

Dec 4, 2023 Sprenkle - CSCI209 5

Favor composition over inheritance

Merge Conflict
•Occurs when competing changes to the same

lines in a file
ØGit doesn’t know how to resolve the merge

•Resolving: manually edit the conflicted file to
what you want to keep in the merge
ØStage change, commit and explain your fix
ØPush branch

Dec 4, 2023 Sprenkle - CSCI209 6

Draw the Stacks
•x+y
•x+floor(y)*x
•(x+floor(y))*x

Dec 4, 2023 Sprenkle - CSCI209 7

PICASSO

Dec 4, 2023 Sprenkle - CSCI209 8

Towards Intermediate Deliverable
• Set up to report errors to users

ØCurrently: in the printed output but users aren’t going to see
that

ØHelpful errors à translated for users
• Opening a file that contains an expression
• Handling new operations

ØOrder of operations
ØAssignment statement

• Functions with multiple arguments, image names
• Extensions

Dec 4, 2023 Sprenkle - CSCI209 9

Hints
•Check out the FAQ
•Create unit tests, when possible/appropriate
ØRun using coverage tool to see what is (and isn’t)

covered.

•Draw things (e.g., stacks, trees) out on paper
•Trace through the code

Dec 7, 2022 Sprenkle - CSCI209 10

Project Goals
•Everyone contributes significantly to the project
ØHas at least one part where they can say “I made

this!”

•Everyone understands the code and its design
ØAll of it. Well, 90% of it, at least at a high level

•Everyone feels valued as a team member

Dec 4, 2023 Sprenkle - CSCI209 11

Contributing to the Team
•Always some concern that your grade is based on

lines of code written
ØNot all lines of code are equal
ØNumber of lines of code is not a good indicator of

work or quality of code

•Variety of opportunities to contribute to the
team

Dec 4, 2023 Sprenkle - CSCI209 12

Tip: Comparing Binary Operators
•Likely need to implement the equals method in

various classes (e.g., Addition, Subtraction, …)
•Stop after you’ve written two
•Compare the methods
ØIs there a code smell? Refactor!

Dec 4, 2023 Sprenkle - CSCI209 13

Tip: Error Handling
•Don’t do too much translation too soon
•Can mask your programming errors (that aren’t

user error errors)

Dec 4, 2023 Sprenkle - CSCI209 14

Final Implementation: Documentation
•You leave, I’m still here, trying to use [grade] your

code
•Documentation

ØExtensions aren’t always obvious
ØState in README

•Javadocs: Purpose of Java classes
ØUpdate comments
ØAuto-generated daily
ØCan be seen on the project web site

Dec 4, 2023 Sprenkle - CSCI209 15

Deliverables: Tagging
•While given code had compiler errors because of

using test-driven development, there should be
no compilation errors in deliverables’ tagged
versions
ØNone for final version
ØFor others, okay if you have clearly marked test

classes for test-driven development

Dec 4, 2023 Sprenkle - CSCI209 16

Secondary Goals
•You’re going to figure out that your final design

isn’t perfect—maybe not even good!
ØFix more critical and/or smaller things

•Refactoring!

ØNote larger things
•analysis/post-mortem due at end of finals week

Dec 4, 2023 Sprenkle - CSCI209 17

Good judgment comes from experience.
How do you get experience?

Bad judgment works every time.

Final Project: Project Analysis - Individual
•Understand teammates’ design/code/parts
ØAt least at a high level

•Contents: Description, Planning, Status, Code
Analysis, Collaboration, Future Work
ØComplete specification online

Dec 4, 2023 Sprenkle - CSCI209 18

Project Planning
•Review project specifications
•Make sure you know what tasks are left
ØIntermediate deadline provides some direction, but

there are a variety of other tasks that can be
implemented.

•Be agile!

Dec 4, 2023 Sprenkle - CSCI209 19

Looking Ahead
•Wednesday: Course Retrospective
•Friday: Intermediate Deadline, Demo
•Finals Week
ØThursday: Final Implementation Deadline
ØFriday - noon: Final Analysis

Dec 4, 2023 Sprenkle - CSCI209 20

