Objectives

- Proving correctness of Stable Matching algorithm
- Analyzing algorithms
- Asymptotic running times

Wiki notes:

- Read after class; I am giving loose guidelines - the point is to review and synthesize
- Monday midnight deadline

If you're interested, join the W\&L Computer Science Facebook Group!

Review

What is the stable matching problem?
$>$ What is given?
$>$ What is our goal?

- Provide a sketch of the algorithm
- What observations do you have about the algorithm and how it progresses?
$>$ What can we say about any woman's partner during the execution of the algorithm?
$>$ How does a woman's state change over the execution of the algorithm?
$>$ What can we say about a man's partner?

Propose-And-Reject Algorithm
 [Gale-Shapley I962]

```
Initialize each person to be free
while (some man is free and hasn't proposed to every woman)
    Choose such a man m
    w = 1 'st woman on m's list to whom m has not yet proposed
    if w is free
    assign m and w to be engaged
    else if w prefers m to her fiancé m'
        assign m}\mathrm{ and w to be engaged and m' to be free
    else
        w rejects m
```


Observations about the Algorithm

What can we say about any woman's partner during the execution of the algorithm?
$>$ Observation 1. He gets "better" \rightarrow she prefers him over her last partner

- How does a woman's state change over the execution of the algorithm?
> Observation 2. Once a woman is matched, she never becomes unmatched; she only "trades up"
- What can we say about a man's partner?
$>$ Observation 3 . She gets "worse"

Proving Correctness

Need to show
Algorithm terminates
$>$ Result is a perfect matching
$>$ Result is a stable matching

1) Algorithm Termination

[Gale-Shapley I962]

Does algorithm terminate?

Initialize each person to be free
while (some man is free and hasn't proposed to every woman)
Choose such a man m
$w=1^{\text {st }}$ woman on m 's list to whom m has not yet proposed if w is free
assign m and w to be engaged
else if w prefers m to her fiancé m^{\prime} assign m and w to be engaged and m^{\prime} to be free
else
w rejects m

Proof of Correctness: Termination

- Claim. Algorithm terminates after at most n^{2} iterations of while loop.
> Hint: How wouldn't the algorithm terminate?

Proof of Correctness: Termination

- Claim. Algorithm terminates after at most n^{2} iterations of while loop.
- Pf. Each time through the while loop, a man proposes to a new woman. There are only n^{2} possible proposals.

Number of proposals is a good measure for termination \rightarrow strictly increases; limited

Proof of Correctness: Termination

- Claim. Algorithm terminates after at most n^{2} iterations of while loop.
- Pf. Each time through the while loop, a man proposes to a new woman. There are only n^{2} possible proposals.

Note: not yet discussing the cost in the body of the while loop

2) Algorithm Analysis: Perfect Matching

Prove that final matching is a perfect matching

- Perfect matching: everyone is matched monogamously
- Hint: in algorithm, we know if m is free at some point in the execution of the algorithm, then there is a woman to whom he has not yet proposed.

Proof of Correctness: Perfection

- Claim. All men and women get matched.
- Pf. (by contradiction)
$>$ Where should we start?

Suppose that some man m is not matched upon termination of algorithm

Proof of Correctness: Perfection

- Claim. All men and women get matched.
- Pf. (by contradiction)
$>$ Suppose that m is not matched upon termination of algorithm
\Rightarrow Then some woman, say w, is not matched upon termination.
$>$ By Observation 2, w was never proposed to.
> But, last man proposed to everyone, since he ends up unmatched
- (by the while loop's condition)
$>$ Contradiction \quad -

Proof of Correctness: Stability

- Claim. No unstable pairs.

> What does it mean for a given matching S^{*} to be unstable?

S*

Amy-Yancey
Bertha-Zeus

How do you think we should approach this proof?

Proof of Correctness: Stability

- Claim. No unstable pairs.
- Pf. (by contradiction)

S*

Amy-Yancey
Bertha-Zeus
$>$ Suppose $\mathrm{m}-\mathrm{w}$ is an unstable pair:
m, w prefers each other to partner in Gale-Shapley matching S*.

> What are the possibilities that lead to this?

Proof of Correctness: Stability

S*

- Claim. No unstable pairs.
- Pf. (by contradiction)
> Suppose m-w is an unstable pair: m, w prefers each other to partner in Gale-Shapley matching S*.
$>$ Case 1: m never proposed to w $\Rightarrow \mathrm{m}$ prefers his GS partner to w.
 men propose in decreasing order of preference
$\Rightarrow \mathrm{m}$-w is stable.
$>$ Case 2: m proposed to w
\Rightarrow w rejected m (right away or later) ఒ women only trade up
\Rightarrow w prefers her GS partner to m .
$\Rightarrow \mathrm{m}-\mathrm{w}$ is stable.
$>$ In either case m-w is stable, a contradiction.

Summary So Far...

Stable matching problem. Given n men and n women and their preferences, find a stable matching if one exists.

- Gale-Shapley algorithm. Guarantees to find a stable matching for any input

Remaining Questions:

- If there are multiple stable matchings, which one does GS find? (see book)
- How to implement GS algorithm efficiently? (next week)
- What is our goal running time?

Review: Our Process

1. Understand/identify problem
> Simplify as appropriate
2. Design a solution
3. Analyze
> Correctness, efficiency
> May need to go back to step 2 and try again
4. Implement
> Within bounds shown in analysis

- 2012 Nobel Memorial Prize in Economic Sciences "for the theory of stable allocations and the practice of market design."

Stable Matching Summary

- Stable matching problem. Given preference profiles of n men and n women, find a stable matching
no man and woman prefer to be with each other than assigned partner
- Gale-Shapley algorithm. Finds a stable matching in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time.
> Claim: can implement algorithm efficiently

Our Process

1. Understand/identify problem

> Simplify as appropriate

2. Design a solution

3. Analyze

Correctness, efficiency
$>$ May need to go back to step 2 and try again
4. Implement (On Wednesday)
> Within bounds shown in analysis

Computational Tractability

As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise - By what course of calculation can these results be arrived at by the machine in the shortest time?

> -- Charles Babbage

Charles Babbage
(I864)

Analytic Engine (schematic)

Brute Force

- For many non-trivial problems, there is a natural brute force search algorithm that checks every possible solution "Exponential"
$>$ Typically takes 2^{N} time or worse for inputs of size N
> Unacceptable in practice

Example: How many possible solutions are there in the stable matching problem?
In other words, how many possible perfect matchings are there? For each perfect match, we'll check if it's stable.

Brute Force

For many non-trivial problems, there is a natural brute force search algorithm that checks every possible solution "Exponential"
$>$ Typically takes 2^{N} time or worse for inputs of size N
> Unacceptable in practice

- Example: Stable matching: n ! with n men and n women
$>$ If n increases by 1 , what happens to the running time?

How Do We Measure Runtime?

Worst-Case Running Time

- Obtain bound on largest possible running time of algorithm on input of a given size N
> Generally captures efficiency in practice
> Draconian view but hard to find effective alternative

> What are alternatives to worst-case analysis?

Average Case Running Time

- Obtain bound on running time of algorithm on random input as a function of input size N
$>$ Hard (or impossible) to accurately model real instances by random distributions
$>$ Algorithm tuned for a certain distribution may perform poorly on other inputs

Towards a Definition of Efficient...

- Desirable scaling property: When input size doubles, algorithm should only slow down by some constant factor C
> Doesn't grow multiplicatively

Polynomial-Time

Defn. There exists constants $\mathrm{c}>0$ and $\mathrm{d}>0$ such that on every input of size N , its running time is bounded by $\mathrm{c} \mathrm{N}^{\mathrm{d}}$ steps.

Desirable scaling property: When input size doubles, algorithm should only slow down by some constant factor C
$>$ What happens if we double N ?

- Defn. An algorithm is polynomial time (or polytime) if the above scaling property holds.

Algorithm Efficiency

- Defn. An algorithm is efficient if its running time is polynomial
- Justification: It really works in practice!
$>$ In practice, poly-time algorithms that people develop almost always have low constants and low exponents
$>$ Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem
- Exceptions
$>$ Some poly-time algorithms do have high constants and/or exponents $\left(6.02 \times 10^{23} \times \mathrm{N}^{20}\right)$ and are useless in practice
$>$ Some exponential-time (or worse) algorithms are widely used because the worst-case instances seem to be rare

Visualizing Running Times

- Huge difference from polynomial to not polynomial
- Differences in runtime matter more as input size increases

Comparing $10000 n^{2}$ and n^{3}

As input size increases, n^{3} dominates large constant $* \mathrm{n}^{2}$
\rightarrow Care about running time as input size approaches infinity
\rightarrow Only care about highest-order term

Asymptotic Order of Growth: Upper Bounds

$\mathrm{T}(\mathrm{n})$ is the worst case running time of an algorithm
"order f(n)"
We say that $T(n)$ is $O(f(n))$ if there exist constants
c cannot depend on n
sufficiently large n
$c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$, we have

$$
T(n) \leq c \cdot f(n)<\begin{aligned}
& T(n) \text { is bounded above by a } \\
& \text { constant multiple of } f(n)
\end{aligned}
$$

T is asymptotically upperbounded by f

Asymptotic Order of Growth:

Upper Bounds Example

- Find an upperbound for
$T(n)=p n^{2}+q n+r$
$>p, q, r$ are positive constants

Motivation:Why can we simplify to just the largest term?

Upper Bounds Example

- Find an upperbound for

$$
T(n)=p n^{2}+q n+r
$$

$>p, q, r$ are positive constants

Idea: Let's inflate the terms in the equation so that all terms are n^{2}

Upper Bounds Example

- $\mathrm{T}(\mathrm{n})=\mathrm{pn}^{2}+\mathrm{qn}+\mathrm{r}$
$>p, q, r$ are positive constants
- For all $n \geq 1$,

$$
\begin{aligned}
T(n) & =p n^{2}+q n+r \\
& \leq p n^{2}+q n^{2}+r n^{2} \\
& =(p+q+r) n^{2} \\
& =c n^{2}
\end{aligned}
$$

$\Rightarrow T(n) \leq n^{2}$, where $\mathrm{c}=\mathrm{p}+\mathrm{q}+\mathrm{r}$
$\Rightarrow T(n)=O\left(n^{2}\right)$

- Also correct to say that $T(n)=O\left(n^{3}\right)$

Notation

- $T(n)=O(f(n))$ is a slight abuse of notation
> Asymmetric:
- $f(n)=5 n^{3} ; g(n)=3 n^{2}$
- $f(n)=O\left(n^{3}\right)=g(n)$
- But $f(n) \neq g(n)$.
$>$ Better notation: $T(n) \in O(f(n))$
Meaningless statement. Any comparison-based sorting algorithm requires at least O(n $\log n$) comparisons
$>$ Use Ω for lower bounds

Asymptotic Order of Growth:

Lower Bounds

- Complementary to upper bound
- $T(n)$ is $\Omega(f(n))$ if there exist constants $\varepsilon>0$ and sufficiently large n
$n_{0} \geq 0$ such that for all $n \geq n_{0}$, we have
$T(n) \geq \varepsilon \cdot f(n)<\begin{aligned} & T(n) \text { is bounded below by a } \\ & \text { constant multiple of } f(n)\end{aligned}$
(T is asymptotically lowerbounded by f

Example: Lower Bound

- $\mathrm{T}(\mathrm{n})=\mathrm{pn}^{2}+\mathrm{qn}+\mathrm{r}$
$>p, q, r$ are positive constants
- Idea: Deflate terms rather than inflate

Example: Lower Bound

- $T(n)=p n^{2}+q n+r$
$>p, q, r$ are positive constants
- Idea: Deflate terms rather than inflate
- For all $\mathrm{n} \geq 0$,
$\mathrm{T}(\mathrm{n})=\mathrm{pn}^{2}+\mathrm{qn}+\mathrm{r} \geq \mathrm{pn}^{2}$
$\Rightarrow T(n) \geq \varepsilon n^{2}$, where $\varepsilon=p>0$
$\rightarrow T(n) \in \Omega\left(n^{2}\right)$
- Also correct to say that $T(n) \in \Omega(n)$

Tight bounds

$T(n)$ is $\Theta(f(n))$ if $T(n)$ is both $O(f(n))$ and $\Omega(f(n))$
> The "right" bound

A Fashion Analogy

- $\mathrm{O}==$ Hammer pants
> Loose and baggy with plenty of room for the pants to shrink or the body to grow
$\Omega==$ The pants you plan to fit in this summer after working off the snacks from Christmas
- $\Theta==$ Katy Perry's skin tight jeans in a teenage dream
> Can't make them any smaller, and no extra room to even fit a cell phone in the pocket

Courtesy Andy Danner, Swarthmore

Looking Ahead

- Continue reading Chapter 2
$>$ Covering later sections on Wednesday
- Journal for 2 pages of Preface, 1.1, Chapter 2, 2.1, 2.2 due Monday at midnight
$>$ No journal for Chapter 1.2
$>$ Wrapping up 2.2 in class on Monday; first part is helpful for problem set
- Problem Set 1 due next Friday before class
$>$ Proof, stable matching, asymptotic bound
$>$ Start early!
- Read problems and let your brain start thinking about them
- Solved exercises in book
\Rightarrow Honor Code

