Objectives

- Review: Asymptotic running times
- Classes of running times
- Implementing Gale-Shapley algorithm

Review Asymptotic Bounds

- How do we define "efficient"?
- What does O(f(n)) mean?
$>$ How do we know if a function $\in O(f(n))$?
- What are the other bounds we discussed?

Review: Asymptotic Order of Growth: Upper Bounds

$T(n)$ is the worst case running time of an algorithm

We say that $T(n)$ is $O(f(n))$ if there exist constants
c cannot depend on n
sufficiently large n
$c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$, we have
$T(n) \leq c \cdot f(n)<\begin{aligned} & T(n) \text { is bounded above by a } \\ & \text { constant multiple of } f(n)\end{aligned}$
$\rightarrow T$ is asymptotically upperbounded by f

Review: Asymptotic Order of Growth:
Upper Bounds

Asymptotic: what happens as input size grows to infinity Jall 14, LOIY SpIEIKIE-CJCIZ11

Review: Upper Bounds Example

- $\mathrm{T}(\mathrm{n})=\mathrm{pn}^{2}+\mathrm{qn}+\mathrm{r}$
$>p, q, r$ are positive constants
- For all $\mathrm{n} \geq 1$,

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =\mathrm{pn}^{2}+q n+r \\
& \leq p n^{2}+q n^{2}+r n^{2} \\
& =(p+q+r) n^{2} \\
& =c n^{2}
\end{aligned}
$$

$\rightarrow \mathrm{T}(\mathrm{n}) \leq \mathrm{cn}^{2}$, where $\mathrm{c}=\mathrm{p}+\mathrm{q}+\mathrm{r}$
$\rightarrow T(n) \in O\left(n^{2}\right)$

- Also correct to say that $T(n) \in O\left(n^{3}\right)$

Review: Asymptotic Order of Growth:

Lower Bounds

- Complementary to upper bound
- $\mathrm{T}(\mathrm{n})$ is $\Omega(\mathrm{f}(\mathrm{n}))$ if there exist constants $\varepsilon>0$ and

> sufficiently large n
$n_{0} \geq 0$ such that for all $n \geq n_{0}$, we have
$T(n) \geq \varepsilon \cdot f(n)<\begin{aligned} & T(n) \text { is bounded below by a } \\ & \text { constant multiple of } f(n)\end{aligned}$
$\rightarrow \mathrm{T}$ is asymptotically lowerbounded by f

Review: Lower Bounds Example

- $T(n)=p n^{2}+q n+r$
$>p, q, r$ are positive constants
- Idea: Deflate terms rather than inflate
- For all $\mathrm{n} \geq 0$,
$\mathrm{T}(\mathrm{n})=\mathrm{pn}^{2}+\mathrm{qn}+\mathrm{r} \geq \mathrm{pn}^{2}$
$\rightarrow T(n) \geq \varepsilon n^{2}$, where $\varepsilon=p>0$
$\Rightarrow T(n) \in \Omega\left(n^{2}\right)$
- Also correct to say that $T(n) \in \Omega(n)$

Review: Tight bounds

$T(n)$ is $\Theta(f(n))$ if $T(n)$ is both $O(f(n))$ and $\Omega(f(n))$
> The "right" bound

Property: Transitivity
How is this property helpful to us when analyzing algorithm runtimes?

- If $f=O(g)$ and $g=O(h)$, then $f=O(h)$
- If $\mathrm{f}=\Omega(\mathrm{g})$ and $\mathrm{g}=\Omega(\mathrm{h})$, then $\mathrm{f}=\Omega(\mathrm{h})$
- If $f=\Theta(g)$ and $g=\Theta(h)$, then $f=\Theta(h)$

Proofs in book
O

Ω

Applying Transitivity Property in Algorithm Analysis

Transitivity property: If $f=O(g)$ and $g=O(h)$, then $f=O(h)$

Property: Additivity
How is this property helpful to us when analyzing algorithm runtimes?

- If $f=O(h)$ and $g=O(h)$, then $f+g=O(h)$
- If $f=\Omega(h)$ and $g=\Omega(h)$, then $f+g=\Omega(h)$
- If $f=\Theta(h)$ and $g=\Theta(h)$, then $f+g=\Theta(h)$

Proofs in book

Sketch proof for O:

$$
\text { By defn, } \mathrm{f} \leq \mathrm{c} \cdot \mathrm{~h}
$$

$$
\text { By defn, } g \leq d \cdot h
$$

$$
f+g \leq c \cdot h+d \cdot h=(c+d) h=c \cdot h
$$

$$
\rightarrow \mathrm{f}+\mathrm{g} \text { is } \mathrm{O}(\mathrm{~h})
$$

Applying Additivity Property in Algorithm Analysis

Additivity property:
If $f=O(h)$ and $g=O(h)$, then $f+g=O(h)$

Practice:
 Asymptotic Order of Growth

What are the upper bounds, lower bounds, and tight bound on $T(n)$?

- $T(n)=32 n^{3}+17 n+32$

Practice:
 Asymptotic Order of Growth

- $T(n)=32 n^{3}+17 n+32$
$\Rightarrow T(n) \in$
- $O\left(\mathrm{n}^{3}\right), \mathrm{O}\left(\mathrm{n}^{4}\right)$
- $\Omega\left(n^{3}\right), \Omega(n)$
- $\Theta\left(\mathrm{n}^{3}\right)$
$>\mathrm{T}(\mathrm{n})$ is not $\mathrm{O}(\mathrm{n}), \Omega\left(\mathrm{n}^{4}\right), \Theta(\mathrm{n})$, or $\Theta\left(\mathrm{n}^{2}\right)$

ASYMPTOTIC BOUNDS FOR CLASSES OF ALGORITHMS

Asymptotic Bounds for Polynomials

- $a_{0}+a_{1} n+\ldots+a_{d} n^{d} \in \Theta\left(n^{d}\right)$ if $a_{d}>0$
\rightarrow Runtime determined by highest-order term
- Polynomial time. Running time is $\mathrm{O}\left(\mathrm{n}^{\mathrm{d}}\right)$ for some constant d that is independent of the input size n
- Other examples of polynomial times:

$$
\begin{aligned}
& >\mathrm{O}\left(\mathrm{n}^{1 / 2}\right) \\
& >\mathrm{O}\left(\mathrm{n}^{1.58}\right) \\
& >\mathrm{O}(\mathrm{n} \log \mathrm{n}) \leq \mathrm{O}\left(\mathrm{n}^{2}\right)
\end{aligned}
$$

Asymptotic Bounds for Logarithms

- Logarithms. $\log _{b} n=x$, where $b^{x}=n$
> Approximate: To represent n in base-b, need $x+1$ digits

N	b	x
100	10	
1000	10	
100	2	
1000	2	

Asymptotic Bounds for Logarithms

- Logarithms. $\log _{b} n=x$, where $b^{x}=n$
$>$ Approximate: To represent n in base- b, need $x+1$ digits

\mathbf{N}	b	x
100	10	2
1000	10	3
100	2	6.64
1000	2	9.92

Describe the running time of an $\mathrm{O}(\log \mathrm{n})$ algorithm as the input size grows. Compare with polynomials.

Asymptotic Bounds for Logarithms

- Logarithms. $\log _{b} n=x$, where $b^{x}=n$
$>x$ is number of digits to represent n in base-b representation

Asymptotic Bounds for Logarithms

- Logarithms. $\log _{b} n=x$, where $b^{x}=n$
\rightarrow Slowly growing functions
- Identity: $\quad \log _{a} n=\log _{b} n / \log _{b} a$
> Means that

$$
\log _{a} n=1 / \log _{b} a * \log _{b} n
$$

Constant!

- $O\left(\log _{a} n\right)=O\left(\log _{b} n\right)$ for any constants $a, b>0$

Asymptotic Bounds for Logarithms

- Logarithms. $\log _{b} n=x$, where $b^{x}=n$
\rightarrow Slowly growing functions
$\mathrm{O}\left(\log _{\mathrm{a}} \mathrm{n}\right)=\mathrm{O}\left(\log _{\mathrm{b}} \mathrm{n}\right)$ for any constants $\mathrm{a}, \mathrm{b}>0$
\rightarrow Don't need to specify the base
- For every $\mathrm{x}>0, \log \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{\mathrm{x}}\right)$
\rightarrow Log grows slower than every polynomial

Asymptotic Bounds for Exponentials

- Exponentials: functions of the form $f(n)=r^{n}$ for constant base r
> Faster growth rates as n increases
- For every $r>1$ and every $d>0, n^{d}=O\left(r^{n}\right)$
\rightarrow Every exponential grows faster than every polynomial

Summary of Asymptotic Bounds

- In terms of growth rates

Logarithms < Polynomials < Exponentials

- Practice comparing functions on next problem set
$>$ See Chapter 2 solved exercise

Review: Our Process

1. Understand/identify problem
> Simplify as appropriate
2. Design a solution
3. Analyze
> Correctness, efficiency
> May need to go back to step 2 and try again
4. Implement
> Within bounds shown in analysis

IMPLEMENTING GALE-SHAPLEY ALGORITHM

Review: Gale-Shapley Stable Matching Algorithm

Initialize each person to be free
while (some man is free and hasn't proposed to every woman) Choose such a man m $w=1^{\text {st }}$ woman on m 's list to whom m has not yet proposed if (w is free)
assign m and w to be engaged else if (w prefers m to her fiancé m^{\prime}) assign m and w to be engaged and m^{\prime} to be free else w rejects m

How Can We Implement The Algorithm Efficiently?

- What is our goal for the implementation's runtime?
- What do we need to model?
- How should we represent them?

How Can We Implement The Algorithm Efficiently?

- What is our goal for the implementation's runtime?
$>\mathrm{O}\left(\mathrm{N}^{2}\right)$
- What do we need to model?
- How should we represent them?

Stable Matching Implementation

- What do we need to represent?
- How should we represent them?

Data	How represented
Men, Women	
Preference lists	
Unmatched men	
Who men proposed to	
Engagements	

Arrays

- Fixed number of elements
- What is the runtime of
$>$ Determining the value of the $\mathrm{i}^{\text {th }}$ item in the array?
$>$ Determining if a value e is in the array?
$>$ Determining if a value e is in the array if the array is sorted?

Array Operations' Running Times

Operation	Running Time
Value of $\mathrm{i}^{\text {th }}$ item	$\mathrm{O}(1) \rightarrow$ direct access
If e is in the array	$\mathrm{O}(\mathrm{n}) \rightarrow$ look through all the elements
If e is in the array if sorted	$\mathrm{O}(\log \mathrm{n}) \rightarrow$ binary search

Limitation of arrays?

Fixed size, so difficult to add/delete elements

Lists

- Dynamic set of elements
$>$ Linked list
> Doubly linked list
What is the running time to
$>$ Add an element to the list?

After deleting e :
Element e
$>$ Delete an element from the list?
$>$ Find an element e in the list?
$>$ Find the $i^{\text {th }}$ element in the list?

List Operations' Running Time

Operation	Running Time
Add element	$\mathrm{O}(1)$
Delete element	$\mathrm{O}(1)$
Find element	$\mathrm{O}(\mathrm{n})$
Find $\mathrm{i}^{\text {th }}$ element	$\mathrm{O}(\mathrm{i})$

Disadvantage of list instead of array?

Finding $i^{\text {th }}$ element is slower

Converting between Lists and Arrays (and Vice Versa)

- What is the running time of converting a list to an array?
- An array to a list?

Looking Ahead

- Wiki due tonight at midnight
$>1^{\text {st }}$ two pages of preface
>1.1
$>2.1,2.2$
- Problem Set 1 due Friday, before class

