Objectives

- Review implementation of Stable Matching
- Survey of common running times

Turn in completed problem sets

Review:

Asymptotic Analysis of Gale-Shapley Alg

Not explicitly in the algorithm, but we need to make the inverse array before the while loop too.

```
Initialize each person to be free O(n)
while (some man is free and hasn't proposed to every woman)
        Choose such a man m O(1)
        w = 1 'st woman on m's list to whom m has not yet proposed (1)
        if (w is free) O(1)
        assign m and w to be engaged O(1)
        else if (w prefers m to her fiancé m') O(1) Using inverse
        assign m and w to be engaged and m' to be free O(1)
        else
        w rejects m O(1)
\[
\text { Total: } O\left(n^{2}\right)
\]
```


More Explicit Algorithm - Preferred

```
def stableMatching( men, women, men_pref_array,
    women_pref_array):
```

O(n) Initialize each person to be free (set up data structures) O(n² ${ }^{2}$ reate inverse array for women's preferences while (some man is free and hasn't proposed to every woman) Choose such a man $m \mathrm{O}(1)$

O(1)
$\mathrm{w}=1^{\text {st }}$ woman on m 's list to whom m has not yet proposed if (w is free) $O(1)$
assign m and w to be engaged $O(1)$ else if (w prefers m to her fiancé $\left.m^{\prime}\right) \bigcirc(1) \begin{gathered}\text { Using inverse } \\ \text { array }\end{gathered}$ assign m and w to be engaged and m^{\prime} to be free $O(1)$ else
w rejects $m O(1)$ return engagements

Total: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

A SURVEY OF COMMON RUNNING TIMES

Linear Time: O(n)

- Running time is at most a constant factor times the size of the input
- Example. Computing the maximum: Compute maximum of n numbers a_{1}, \ldots, a_{n}

```
max = a 
for i = 2 to n
    if ( }\mp@subsup{a}{i}{}>>\operatorname{max}
    max = aim (does not depend on n)

\section*{Example Linear Time: O(n)}
- Merge: Combine two sorted lists
\(A=a_{1}, a_{2}, \ldots, a_{n}\) with \(B=b_{1}, b_{2}, \ldots, b_{n}\) into sorted whole

\section*{Example Linear Time: O(n)}

Merge: Combine two sorted lists
\(A=a_{1}, a_{2}, \ldots, a_{n}\) with \(B=b_{1}, b_{2}, \ldots, b_{n}\) into sorted whole
- Claim. Merging two lists of size \(n\) takes \(O(n)\) time
```

i=1, j = 1
while (both lists are nonempty)
if (}\mp@subsup{a}{i}{}\leq\mp@subsup{b}{j}{\prime}
append }\mp@subsup{a}{i}{}\mathrm{ to output list and increment i
else
append }\mp@subsup{b}{j}{}\mathrm{ to output list and increment j
append remainder of nonempty list to output list

```

\section*{Example Linear Time: O(n)}

Merge: Combine two sorted lists \(A=a_{1}, a_{2}, \ldots, a_{n}\) with \(B=b_{1}, b_{2}, . ., b_{n}\) into sorted whole
- Claim. Merging two lists of size \(n\) takes \(O(n)\) time
- Proof. After each comparison, the length of output list increases by 1
```

i = 1, j = 1
while (both lists are nonempty)
if (ai < bj)
append ai to output list and increment i
else
append }\mp@subsup{b}{j}{}\mathrm{ to output list and increment j
append remainder of nonempty list to output list

```

\section*{O(n log n) Time}
- Also referred to as linearithmic time
- Arises in divide-and-conquer algorithms
\(>\) Splitting input into equal pieces, solve recursively, combine solutions in linear time

> What well-known set of algorithms has an \(O\) (n logn) running time?

\section*{O(n log n) Time Example}
- Sorting: Mergesort and heapsort are sorting algorithms that perform \(\mathrm{O}(\mathrm{n} \log \mathrm{n}\) ) comparisons
- Mergesort
1. Break input into equal-sized pieces
2. Sorts each half recursively
3. Merges sorted halves into a sorted list

Talk about the bound on running time later...

\section*{O(n \(\log n\) ) Time Example}
- Largest empty interval. Given \(n\) (not necessarily ordered) time-stamps \(x_{1}, \ldots, x_{n}\) at which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?

\[
\begin{aligned}
& x 1=10 \text { a.m. } \\
& x 2=4 \text { p.m. } \\
& x 3=11 \text { a.m. } \\
& x 4=3 \text { p.m. }
\end{aligned}
\]

\section*{O(n log n) Time Example}
- Largest empty interval. Given \(n\) (not necessarily ordered) time-stamps \(x_{1}, \ldots, x_{n}\) at which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?
- \(\mathrm{O}(\mathrm{n} \log \mathrm{n})\) solution
1. Sort time-stamps
2. Scan sorted list in order, identifying the maximum gap between successive time-stamps

\section*{Quadratic Time: \(\mathrm{O}\left(\mathrm{n}^{2}\right)\)}
- Examples?

\section*{Quadratic Time: O(n²)}
- Examples:
\(>\) Enumerate all pairs of elements
\(>\) Sometimes involves nested loops ( n iterations)
\(>\) Insertion sort

\section*{Quadratic Time: O( \(\mathrm{n}^{2}\) )}
- Closest pair of points. Given a list of \(n\) points in the plane \(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\), find the pair that is closest
- \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) solution. Try all pairs of points
```

min = (x (}-\mp@subsup{x}{2}{}\mp@subsup{)}{}{2}+(\mp@subsup{y}{1}{}-\mp@subsup{y}{2}{}\mp@subsup{)}{}{2
for i = 1 to n
for j = i+1 to n
d = (\mp@subsup{x}{i}{}-\mp@subsup{x}{j}{\prime}\mp@subsup{)}{}{2}+(\mp@subsup{y}{i}{}-\mp@subsup{y}{j}{}\mp@subsup{)}{}{2}~}\quad\mathrm{ don't need to
if (d < min)
min = d

```
\(\Omega\left(n^{2}\right)\) seems inevitable, but Chapter 5 has an \(O(n \log n)\) solution

\section*{Polynomial Time: O(nk) Time}
- To get all pairs, the algorithm is \(O\left(n^{2}\right)\)
- To get all triplets, the algorithm is \(\mathrm{O}\left(\mathrm{n}^{3}\right)\)
\[
\text { What is an example of an } O\left(\mathrm{n}^{k}\right) \text { algorithm? }
\]

All subsets of size \(k\)

\section*{Polynomial Time: O( \(\left.\mathrm{n}^{\mathrm{k}}\right)\) Time}
- Independent set of size \(k\). Given a graph, are there \(k\) nodes such that no two are joined by an edge?
\(>k\) is a constant


Is there an independent set of size 2? 3? 4? 5?

\section*{Polynomial Time: O( \(\left.n^{\mathrm{k}}\right)\) Time}
- Independent set of size \(k\). Given a graph, are there \(k\) nodes such that no two are joined by an edge?
\(>k\) is a constant


\section*{Polynomial Time: O(nk) Time}
- Independent set of size \(k\). Given a graph, are there \(k\) nodes such that no two are joined by an edge?
\(>k\) is a constant
foreach subset \(S\) of \(k\) nodes check whether \(S\) in an independent set if ( \(S\) is an independent set) report \(S\) is an independent set
- \(\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)\) solution
1. Enumerate all subsets of k nodes
\[
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{n!}{k!(n-k)!}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k(k-1)(k-2) \ldots(2)(1)} \leq \frac{n^{k}}{k!}
\]
1. Check whether S is an independent set \(=\mathrm{O}\left(\mathrm{k}^{2}\right)\).
\[
\mathrm{O}\left(\mathrm{k}^{2} \mathrm{n}^{\mathrm{k}} / \mathrm{k}!\right)=\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right) \quad \text { poly-time for } \mathrm{k}=17
\]

\section*{Exponential Time}
- Independent set. Given a graph, what is the maximum size of an independent set?
- \(\mathrm{O}\left(\mathrm{n}^{2} 2^{\mathrm{n}}\right)\) solution. Enumerate all subsets
```

S* = \phi
foreach subset S of nodes
check whether S in an independent set
if (S is largest independent set seen so far)
S* = S

```

\section*{O(log n) Time}
- Sublinear time
- Know any algorithms that take \(\mathrm{O}(\log n)\) time?

\section*{O(log n) Time}
- Example: Binary search
- Often requires some pre-processing or data structure that allows cheaper "querying" than \(n\) time

\section*{Summary of Running Times}

Running Time Example
\begin{tabular}{|c|l|}
\hline \(\mathrm{O}(\log \mathrm{n})\) & \begin{tabular}{l} 
Generally dividing problem in half on each \\
iteration
\end{tabular} \\
\hline \(\mathrm{O}(\mathrm{n})\) & Operate on each input value \\
\hline \(\mathrm{O}(\mathrm{n} \log \mathrm{n})\) & Divide and conquer \\
\hline \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) & Operate on each pair of inputs \\
\hline \(\mathrm{O}(\mathrm{n}!)\) & Operate on each permutation of inputs \\
\hline
\end{tabular}

\section*{MORE COMPLEX DATA STRUCTURES}

\section*{Improving Running Times}

After overcoming higher-level obstacles, lower-level implementation details can improve runtime.

\section*{PRIORITY QUEUES}

\section*{Priority Queues}

Elements have a priority or key
- Each time select an element from the priority queue, want the one with highest priority
More formally...
\(>\) Maintains a set of elements \(S\)
- Each element \(v \in S\) has a key ( \(v\) ) for its priority > Smaller keys represent higher priorities
\(>\) Application Programming Interface
- Add, delete elements
- Select element with smallest key
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Key & 2 & 4 & 5 & 6 & 9 & 20 & ¿ Priority \\
\hline Value & 3542 & 5143 & 8712 & 1264 & 9123 & 5954 & Process id \\
\hline
\end{tabular}

Jan 18, 2019 (Not implementation, just how to envision)

\section*{Motivating Example: Scheduling Processes}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Key & 2 & 4 & 5 & 6 & 9 & 20 & Priority \\
\hline Value & 3542 & 5143 & 8712 & 1264 & 9123 & \(5954 \longleftarrow\) Process id \\
\hline
\end{tabular}

Each process has a priority or urgency
- Processes do not arrive in priority order
- Goal: run process with highest priority

\section*{Using a Priority Queue (PQ)}
- PQ API:
\(>\) Add an element with a given key (i.e., priority)
\(>\) Delete an element with a given priority
\(>\) Select element with smallest key/highest priority
\(>\) Get the number of elements in PQ

Given a list of numbers, how could you use a PQ to sort that list of numbers?

\section*{Priority Queues for Sorting}
1. Add elements into \(P Q\) with the number's value as its priority
2. Then extract the smallest number until done
> Come out in sorted order

Sorting n numbers takes \(O\) ( \(n\) logn) time
What is the goal running time for our PQ's operations? O(logn)

Already know our "loops" will be O(n)

\section*{Implementing a Priority Queue}
- Consider an unordered list, where there is a pointer to minimum

- How difficult (i.e., expensive) is
> Adding new elements?
- Extraction?

\section*{Implementing a Priority Queue}
- Consider an unordered list, where there is a pointer to minimum

- How difficult (i.e., expensive) is
\(>\) Adding new elements? easy (O(1))
\(>\) Extraction? difficult
- Need to find "new" minimum: O(n)

> What is the running time for sorting

\section*{Implementing a Priority Queue}
- Consider a sorted list where min is at the beginning

- Should you use an array or linked list?
- How difficult is
> Adding new elements?
\(>\) Extraction?

\section*{Implementing a Priority Queue}
- Consider a sorted list where min is at the beginning

\({ }_{m i n}\)
- Should you use an array or linked list?
- How difficult is
\(>\) Adding new elements? difficult (insertion) - O(n)
\(>\) Extraction? Easy - O(1)
What is the running time for sorting using the PQ in this case?

\section*{Looking Ahead}
- Wiki due Monday
> 2.3, 2.4
- Problem Set 2 due Friday```

