# Objectives

- Data structure: Heaps
- Implementing a Priority Queue

Jan 23, 2019

Sprenkle - CSCI211

### **Review: Summary of Running Times**

| Running Time       | Example |
|--------------------|---------|
| O(log n)           |         |
| O(n)               |         |
| O(n log n)         |         |
| O(n <sup>2</sup> ) |         |
| O(n!)              |         |

Common runtimes: Chapter 2.4

Jan 23, 2019

Sprenkle - CSCI211

# **Review: Summary of Running Times**

| <b>Running Time</b> | Example                                     |
|---------------------|---------------------------------------------|
| O(log n)            | Dividing problem in half on each iteration  |
| O(n)                | Operate constant amount on each input value |
| O(n log n)          | Divide and conquer                          |
| O(n <sup>2</sup> )  | Operate on each pair of inputs              |
| O(n!)               | Operate on each permutation of inputs       |

Jan 23, 2019 Sprenkle - CSCI211

#### Review

- What does a priority queue (PQ) contain?
- What is the PQ's API?
- How can we sort a list of numbers using a PQ?
- What is our goal runtime for the PQ's operations?

Jan 23, 2019 Sprenkle - CSCI211

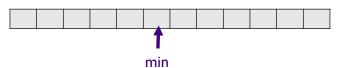
### **Priority Queues for Sorting**

- 1. Add elements into PQ with the number's value as its priority
- 2. Then extract the smallest number until done
  - Come out in sorted order

#### Sorting n numbers takes O(n logn) time

What is the goal running time for our PQ's operations? **O(logn)** 

Already know our "loops" will be O(n)


Jan 23, 2019

Sprenkle - CSCI211

5

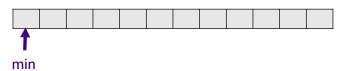
### Implementing a Priority Queue

 Consider an unordered list, where there is a pointer to minimum



- How difficult (i.e., expensive) is
  - > Adding new elements? easy (O(1))
  - > Extraction? difficult
    - Need to find "new" minimum: O(n)

What is the running time for sorting using the PQ in this case?




Jan 23, 2019

Sprenkle - CSCI211

### Implementing a Priority Queue?

Consider a sorted list where min is at the beginning



- Should you use an array or linked list?
- How difficult is
  - > Adding new elements?
  - > Extraction?

Jan 23, 2019

Sprenkle - CSCI211

7

### Implementing a Priority Queue

Consider a sorted list where min is at the beginning



min

- Should you use an array or linked list?
- How difficult is
  - > Adding new elements? difficult (insertion) O(n)
  - $\triangleright$  Extraction? *Easy O(1)*

What is the running time for sorting using the PQ in this case?



Jan 23, 2019

Sprenkle - CSCI211

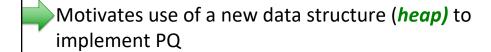
# **Comparing Data Structures**

| Operation    | Unsorted<br>List | Sorted List |
|--------------|------------------|-------------|
| Start(N)     |                  |             |
| Insert(v)    |                  |             |
| FindMin()    |                  |             |
| Delete(i)    |                  |             |
| ExtractMin() |                  |             |

Jan 23, 2019 Sprenkle - CSCI211

# **Comparing Data Structures**

| Operation    | Unsorted<br>List | Sorted List |
|--------------|------------------|-------------|
| Start(N)     | O(1)             | O(1)        |
| Insert(v)    | O(1)             | O(n)        |
| FindMin()    | O(1)             | O(1)        |
| Delete(i)    | O(n)             | O(1)        |
| ExtractMin() | O(n)             | O(1)        |


Assuming deleting the first element. If deleting another element, O(i)

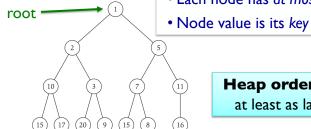
10

Jan 23, 2019 Sprenkle - CSCI211

### Reflection

- All of "known" data structures has one operation that takes O(n) time
- Cannot implement PQs with "known" data structures arrays and lists to meet desired O(n log n) runtime




Jan 23, 2019 Sprenkle - CSCI211 11

#### **HEAPS**

Jan 23, 2019 Sprenkle - CSCI211 12

### **Heap Defined**

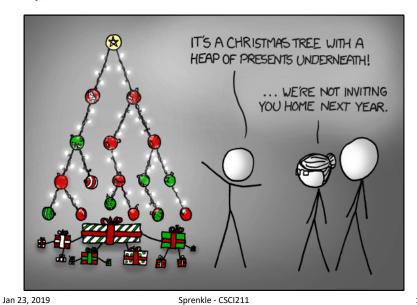
- Combines benefits of sorted array and list
- Balanced binary tree



• Each node has at most 2 children

Heap order: each node's key is

at least as large as its parent's


Note: not a binary search tree

Jan 23, 2019

Sprenkle - CSCI211

13

### Heaps



### Implementing a Heap

- Option 1: Use pointers
  - > Each node keeps
    - Element it stores (key)
    - 3 pointers: 2 children, parent
- Option 2: No pointers
  - Requires knowing upper bound on n
  - > For node at position i
    - left child is at 2i
    - right child is at 2i+1



Where does the index in the array start?

If know child's position, what is the position of parent?

15

### Implementing a Heap: Operations

• Finding the minimal element?

Jan 23, 2019 Sprenkle - CSCI211 16

# Implementing a Heap: Operations

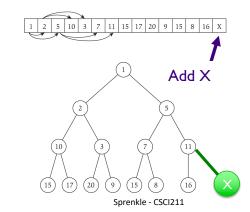
- Finding the minimal element
  - > First element
  - > O(1)

Jan 23, 2019

Sprenkle - CSCI211

17

### Implementing a Heap: Operations


- Adding an element?
  - > Assume heap has less than N elements

Jan 23, 2019

Sprenkle - CSCI211

### Implementing a Heap: Operations

- Adding an element?
  - > Could add element to last position
    - What are possible scenarios?



Jan 23, 2019

19

### Implementing a Heap: Operations

- Adding an element?
  - Could add element to last position
    - What are possible scenarios?
      - ➤ Heap is no longer balanced
      - > Something that is almost a heap but a little off
      - ➤ Need Heapify-up procedure to fix our heap

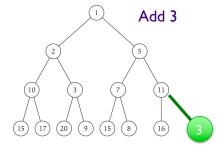
Jan 23, 2019

Sprenkle - CSCI211

# Heapify-Up

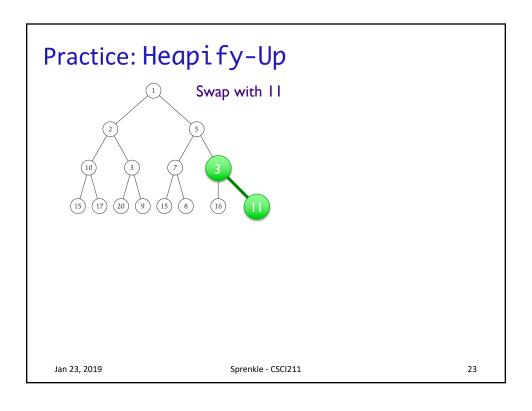
Heap Position where node added

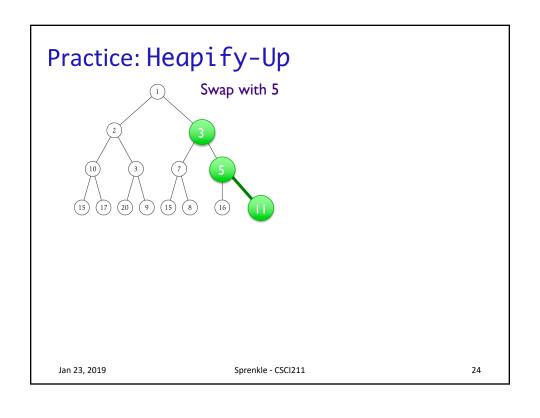
```
Heapify-up(H, i):
    if i > 1 then
        j=parent(i)=floor(i/2)
        if key[H[i]] < key[H[j]] then
        swap array entries H[i] and H[j]
        Heapify-up(H, j)
```


- Why does this algorithm work?
- What is the intuition?

Jan 23, 2019

Sprenkle - CSCI211


21


# Practice: Heapify-Up



Jan 23, 2019

Sprenkle - CSCI211





# Heapify-Up

- Claim. Assuming array H is almost a heap with key of H[i] too small, Heapify-Up fixes the heap property in O(log i) time
  - Can insert a new element in a heap of *n* elements in O(log n) time

Jan 23, 2019 Sprenkle - CSCI211 25

#### **TODO**

Problem Set – due Friday

Jan 23, 2019 Sprenkle - CSCI211 26