
1/25/19

1

Objectives
• Data structure: Heaps
• Data structure: Graphs

Jan 25, 2019 1CSCI211 - Sprenkle

Submit problem set 2

Review
• What is a priority queue?
• What is a heap?

ØProperties
Ø Implementation

• What is the process for finding the smallest
element in a heap?

• What is the process for adding to a heap?
ØWhat is the runtime of adding to a heap?

Jan 25, 2019 CSCI211 - Sprenkle 2

1/25/19

2

Review: Heap Defined
• Combines benefits of sorted array and list
• Balanced binary tree

Jan 25, 2019 3

root
• Each node has at most 2 children

•Node value is its key

Heap order: each node’s key is
at least as large as its parent’s

Note: not a binary search tree

CSCI211 - Sprenkle

Review: Implementing a Heap
• Option 1: Use pointers

Ø Each node keeps
• Element it stores (key)
• 3 pointers: 2 children, parent

• Option 2: No pointers
ØRequires knowing upper bound on n
Ø For node at position i

• left child is at 2i
• right child is at 2i+1

Jan 25, 2019 4CSCI211 - Sprenkle

1/25/19

3

Review: Implementing a Heap
• Finding the minimal element

Ø First element
ØO(1)

Jan 25, 2019 5CSCI211 - Sprenkle

Review: Heapify-Up

Jan 25, 2019 6

Heapify-up(H, i):
if i > 1 then

j=parent(i)=floor(i/2)
if key[H[i]] < key[H[j]] then

swap array entries H[i] and H[j]
Heapify-up(H, j)

Heap Position where node added

CSCI211 - Sprenkle

1/25/19

4

Heapify-Up
• Claim. Assuming array H is almost a heap with

key of H[i] too small, Heapify-Up fixes the
heap property in O(log i) time
ØCan insert a new element in a heap of n elements in

O(log n) time
• Proof. By induction

Ø If i=1 …

Jan 25, 2019 7CSCI211 - Sprenkle

Heapify-Up
• Claim. Assuming array H is almost a heap with

key of H[i] too small, Heapify-Up fixes the
heap property in O(log i) time
ØCan insert a new element in a heap of n elements in

O(log n) time
• Proof. By induction

Ø If i=1, is already a heap à O(1)
Ø If i>1, …

Jan 25, 2019 8CSCI211 - Sprenkle

1/25/19

5

Heapify-Up
• Claim. Assuming array H is almost a heap with

key of H[i] too small, Heapify-Up fixes the
heap property in O(log i) time
ØCan insert a new element in a heap of n elements in

O(log n) time
• Proof. By induction

Ø If i=1, is already a heap à O(1)
Ø If i>1,

• Swaps are O(1)
• Swaps continue up to root (max) à log i

Jan 25, 2019 9CSCI211 - Sprenkle

Deleting an Element

Jan 25, 2019 CSCI211 - Sprenkle 10

Delete at
position 3

w

1/25/19

6

Deleting an Element

• Delete at position i
• Removing an element:

ØMesses up heap order

Ø Leaves a “hole” in the heap

• Not as straightforward as Heapify-Up
• Algorithm:

1. Fill in element where hole was

• Patch hole: move nth element into ith spot

2. Adjust heap to be in order

• At position i because moved nth item up to i

Jan 25, 2019 11CSCI211 - Sprenkle

Deleting an Element

• Two “bad” possibilities: element w is
Ø Too small: violation is between it and parent à
Heapify-Up

Ø Too big: with one or both children à Heapify-Down
(example: w becomes 12)

Jan 25, 2019 12CSCI211 - Sprenkle

Delete at
position 3

w

Example of OK:
11 deleted, replaced by 16

1/25/19

7

Deleting an Element

• Delete 9

• Replace with 5 (from other side of heap)

• But 5 < 6, so need to Heapify-Up

Jan 25, 2019 13

Example where new key is too small

3

4 7 5

6

2

10

CSCI211 - Sprenkle

Heapify-Down

Jan 25, 2019 14

Heapify-down(H, i):
n = length(H)
if 2i > n then

Terminate with H unchanged
else if 2i < n then

left=2i and right=2i+1
j be index that minimizes

key[H[left]] and key[[H[right]]
else if 2i = n then

j=2i

if key[H[j]] < key[H[i]] then
swap array entries H[i] and H[j]
Heapify-down(H, j)

CSCI211 - Sprenkle

Why can we stop?

1/25/19

8

Heapify-Down

Jan 25, 2019 15

Heapify-down(H, i):
n = length(H)
if 2i > n then

Terminate with H unchanged
else if 2i < n then

left=2i and right=2i+1
j be index that minimizes

key[H[left]] and key[[H[right]]
else if 2i = n then

j=2i

if key[H[j]] < key[H[i]] then
swap array entries H[i] and H[j]
Heapify-down(H, j)

CSCI211 - Sprenkle

i is a leaf – nowhere to go

Practice: Heapify-Down

Jan 25, 2019 16

Moved 21 to where
element was removed

21

CSCI211 - Sprenkle

1/25/19

9

Practice: Heapify-Down

Jan 25, 2019 17

21

21

7

CSCI211 - Sprenkle

Practice: Heapify-Down

Jan 25, 2019 18

21

7

8

7

21

CSCI211 - Sprenkle

1/25/19

10

Runtime of Heapify-Down?

Jan 25, 2019 19

Heapify-down(H, i):
n = length(H)
if 2i > n then

Terminate with H unchanged
else if 2i < n then

left=2i and right=2i+1
j be index that minimizes

key[H[left]] and key[[H[right]]
else if 2i = n then

j=2i

if key[H[j]] < key[H[i]] then
swap array entries H[i] and H[j]
Heapify-down(H, j)

CSCI211 - Sprenkle

O(1)

O(1)

Num swaps: O(log n)

Implementing Priority Queues
with Heaps

Jan 25, 2019 20

Operation Description Run Time

StartHeap(N) Creates an empty heap that can
hold N elements

Insert(v) Inserts item v into heap

FindMin() Identifies minimum element in
heap but does not remove it

Delete(i) Deletes element in heap at
position i

ExtractMin() Identifies and deletes an element
with minimum key from heap

CSCI211 - Sprenkle

1/25/19

11

Implementing Priority Queues
with Heaps

Jan 25, 2019 21

Operation Description Run Time

StartHeap(N) Creates an empty heap that can
hold N elements O(N)

Insert(v) Inserts item v into heap O(log n)

FindMin() Identifies minimum element in
heap but does not remove it O(1)

Delete(i) Deletes element in heap at
position i O(log n)

ExtractMin() Identifies and deletes an element
with minimum key from heap O(log n)

CSCI211 - Sprenkle

Comparing Data Structures

Jan 25, 2019 22

Operation Heap Unsorted
List

Sorted List

Start(N) O(1) O(1)
Insert(v) O(1) O(n)
FindMin() O(1) O(1)
Delete(i) O(n) O(1)
ExtractMin() O(n) O(1)

CSCI211 - Sprenkle

1/25/19

12

Comparing Data Structures

Jan 25, 2019 23

Operation Heap Unsorted
List

Sorted List

Start(N) O(N) O(1) O(1)
Insert(v) O(log n) O(1) O(n)
FindMin() O(1) O(1) O(1)
Delete(i) O(log n) O(n) O(1)
ExtractMin() O(log n) O(n) O(1)

CSCI211 - Sprenkle

Putting It All Together…
1. Add elements into PQ with the number’s value

as its priority
2. Then extract the smallest number until done

ØCome out in sorted order

Jan 25, 2019 24CSCI211 - Sprenkle

What is the running time of sorting numbers
using a PQ implemented with a heap?

O(n log n)

1/25/19

13

Additional Heap Operations
• Access elements in PQ by “name”

Ø Maintain additional array Position that stores current
position of each element in heap

• Operations:
Ø Delete(Position[v])

• Does not increase overall running time
Ø ChangeKey(v, α)

• Changes key of element v to α
• Identify position of element v in array (Position array)
• Change key, heapify

Jan 25, 2019 25CSCI211 - Sprenkle

Key 2 4 5 6 9 20
Value 3542 5143 8712 1264 9123 5954 Process id

Priority

GRAPHS

Jan 25, 2019 CSCI211 - Sprenkle 26

1/25/19

14

Undirected Graphs G = (V, E)
• V = nodes (vertices)
• E = edges between pairs of nodes
• Captures pairwise relationship between

objects
• Graph size parameters: n = |V|, m = |E|

27

V = { 1, 2, 3, 4, 5, 6, 7, 8 }
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }
n = 8
m = 11

Jan 25, 2019 CSCI211 - Sprenkle

CSCI211 - Sprenkle

Social Networks
• Node: people; Edge: relationship between 2 people
• Everything Bad Is Good for You: How Today's

Popular Culture Is Actually Making Us Smarter

28

Television shows have
complex plots,
complex social networks

Social network of
Game of Thrones

http://www.cs.duke.edu/csed/harambeenet/modules.html

Jan 25, 2019

1/25/19

15

Facebook: Visualizing Friends

Jan 25, 2019 CSCI211 - Sprenkle 29

http://www.facebook.com/notes/facebook-
engineering/visualizing-friendships/469716398919

World Wide Web
• Web graph

ØNode: web page
Ø Edge: hyperlink from one page to another

30

cnn.com

people.combleacherreport.comnetscape.aol.com time.com

hbo.com

gameofthrones.com

Directed Graph:

Jan 25, 2019 CSCI211 - Sprenkle

1/25/19

16

Ecological Food Web
• Food web graph

ØNode = species
Ø Edge = from prey to

predator

32

Reference:
https://www.msu.edu/course/isb/202/ebe
rtmay/images/foodweb.jpg

Directed Graph:

Jan 25, 2019 CSCI211 - Sprenkle

Graph Applications

33

transportation

Graph
street intersections

Nodes Edges
highways

communication computers fiber optic cables

World Wide Web web pages hyperlinks

social people relationships

food web species predator-prey

software systems functions function calls

scheduling tasks precedence constraints

circuits gates wires

Jan 25, 2019 CSCI211 - Sprenkle

1/25/19

17

Graph Representation: Adjacency Matrix
• n�n matrix with Auv = 1 if (u, v) is an edge

Ø Two representations of each edge (symmetric
matrix)

Ø Space?
ØChecking if (u, v) is an edge?
Ø Identifying all edges?

34

1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 0 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

Jan 25, 2019 CSCI211 - Sprenkle

Graph Representation: Adjacency Matrix
• n�n matrix with Auv = 1 if (u, v) is an edge

Ø Two representations of each edge (symmetric
matrix)

Ø Space: Q(n2)
ØChecking if (u, v) is an edge: Q(1) time
Ø Identifying all edges: Q(n2) time

35Jan 25, 2019 CSCI211 - Sprenkle

1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 0 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

1/25/19

18

Graph Representation: Adjacency List

• Node indexed array of lists

Ø Two representations of each edge

Ø Space?

ØChecking if (u, v) is an edge?

Ø Identifying all edges?

36

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

3 7

no
de

edges

Jan 25, 2019 CSCI211 - Sprenkle

What are the
extremes?

Graph Representation: Adjacency List

• Node indexed array of lists

Ø Two representations of each edge

Ø Space = 2m + n = O(m + n)

ØChecking if (u, v) is an edge takes O(deg(u)) time

Ø Identifying all edges takes Q(m + n) time

Jan 25, 2019 CSCI211 - Sprenkle 37

degree = number of
neighbors of u

no
de

edges1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

3 7

1/25/19

19

Paths and Connectivity
• Def. A path in an undirected graph G = (V, E) is a

sequence P of nodes v1, v2, …, vk-1, vk
Ø Each consecutive pair vi, vi+1 is joined by an edge in E

• Def. A path is simple if all nodes are distinct
• Def. An undirected graph is connected if ∀ pair

of nodes u and v, there is a path between u and v

38

•Short path
•Distance

Jan 25, 2019 CSCI211 - Sprenkle

