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Objectives
• Data structure: Heaps
• Data structure: Graphs
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Submit problem set 2

Review
• What is a priority queue?
• What is a heap?

ØProperties
Ø Implementation

• What is the process for finding the smallest 
element in a heap?

• What is the process for adding to a heap?
ØWhat is the runtime of adding to a heap?
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Review: Heap Defined
• Combines benefits of sorted array and list
• Balanced binary tree
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root
• Each node has at most 2 children

•Node value is its key

Heap order: each node’s key is 
at least as large as its parent’s

Note: not a binary search tree
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Review: Implementing a Heap
• Option 1: Use pointers

Ø Each node keeps
• Element it stores (key)
• 3 pointers: 2 children, parent

• Option 2: No pointers
ØRequires knowing upper bound on n
Ø For node at position i

• left child is at 2i
• right child is at 2i+1
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Review: Implementing a Heap
• Finding the minimal element

Ø First element
ØO(1)
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Review: Heapify-Up
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Heapify-up(H, i):
if i > 1 then

j=parent(i)=floor(i/2)
if key[H[i]] < key[H[j]] then

swap array entries H[i] and H[j]
Heapify-up(H, j)

Heap Position where node added
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Heapify-Up
• Claim.  Assuming array H is almost a heap with 

key of H[i] too small, Heapify-Up fixes the 
heap property in O(log i) time
ØCan insert a new element in a heap of n elements in 

O(log n) time
• Proof.  By induction

Ø If i=1 …
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Heapify-Up
• Claim.  Assuming array H is almost a heap with 

key of H[i] too small, Heapify-Up fixes the 
heap property in O(log i) time
ØCan insert a new element in a heap of n elements in 

O(log n) time
• Proof.  By induction

Ø If i=1, is already a heap à O(1)
Ø If i>1, …
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Heapify-Up
• Claim.  Assuming array H is almost a heap with 

key of H[i] too small, Heapify-Up fixes the 
heap property in O(log i) time
ØCan insert a new element in a heap of n elements in 

O(log n) time
• Proof.  By induction

Ø If i=1, is already a heap à O(1)
Ø If i>1,

• Swaps are O(1)
• Swaps continue up to root (max)  à log i
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Deleting an Element
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Delete at 
position 3

w
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Deleting an Element

• Delete at position i
• Removing an element:

ØMesses up heap order

Ø Leaves a “hole” in the heap

• Not as straightforward as Heapify-Up
• Algorithm:

1. Fill in element where hole was

• Patch hole: move nth element into ith spot

2. Adjust heap to be in order

• At position i because moved nth item up to i
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Deleting an Element

• Two “bad” possibilities: element w is
Ø Too small: violation is between it and parent à
Heapify-Up 

Ø Too big: with one or both children à Heapify-Down 
(example: w becomes 12)
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Delete at 
position 3

w

Example of OK:
11 deleted, replaced by 16
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Deleting an Element

• Delete 9

• Replace with 5 (from other side of heap)

• But 5 < 6, so need to Heapify-Up
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Example where new key is too small

3

4 7 5

6

2

10
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Heapify-Down
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Heapify-down(H, i):
n = length(H)
if 2i > n then

Terminate with H unchanged
else if 2i < n then

left=2i and right=2i+1
j be index that minimizes

key[H[left]] and key[[H[right]]
else if 2i = n then

j=2i

if key[H[j]] < key[H[i]] then
swap array entries H[i] and H[j]
Heapify-down(H, j)
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Why can we stop?
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Heapify-Down
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Heapify-down(H, i):
n = length(H)
if 2i > n then

Terminate with H unchanged
else if 2i < n then

left=2i and right=2i+1
j be index that minimizes

key[H[left]] and key[[H[right]]
else if 2i = n then

j=2i

if key[H[j]] < key[H[i]] then
swap array entries H[i] and H[j]
Heapify-down(H, j)
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i is a leaf – nowhere to go

Practice: Heapify-Down
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Moved 21 to where 
element was removed

21
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Practice: Heapify-Down
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21

21

7
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Practice: Heapify-Down
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21

7

8

7

21
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Runtime of Heapify-Down?
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Heapify-down(H, i):
n = length(H)
if 2i > n then

Terminate with H unchanged
else if 2i < n then

left=2i and right=2i+1
j be index that minimizes

key[H[left]] and key[[H[right]]
else if 2i = n then

j=2i

if key[H[j]] < key[H[i]] then
swap array entries H[i] and H[j]
Heapify-down(H, j)
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O(1)

O(1)

Num swaps: O(log n)

Implementing Priority Queues
with Heaps
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Operation Description Run Time

StartHeap(N) Creates an empty heap that can 
hold N elements

Insert(v) Inserts item v into heap

FindMin() Identifies minimum element in 
heap but does not remove it

Delete(i) Deletes element in heap at 
position i

ExtractMin() Identifies and deletes an element 
with minimum key from heap

CSCI211 - Sprenkle
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Implementing Priority Queues
with Heaps
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Operation Description Run Time

StartHeap(N) Creates an empty heap that can 
hold N elements O(N)

Insert(v) Inserts item v into heap O(log n)

FindMin() Identifies minimum element in 
heap but does not remove it O(1)

Delete(i) Deletes element in heap at 
position i O(log n)

ExtractMin() Identifies and deletes an element 
with minimum key from heap O(log n)
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Comparing Data Structures
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Operation Heap Unsorted
List

Sorted List

Start(N) O(1) O(1)
Insert(v) O(1) O(n)
FindMin() O(1) O(1)
Delete(i) O(n) O(1)
ExtractMin() O(n) O(1)
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Comparing Data Structures
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Operation Heap Unsorted
List

Sorted List

Start(N) O(N) O(1) O(1)
Insert(v) O(log n) O(1) O(n)
FindMin() O(1) O(1) O(1)
Delete(i) O(log n) O(n) O(1)
ExtractMin() O(log n) O(n) O(1)
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Putting It All Together…
1. Add elements into PQ with the number’s value 

as its priority
2. Then extract the smallest number until done

ØCome out in sorted order
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What is the running time of sorting numbers 
using a PQ implemented with a heap?

O(n log n)
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Additional Heap Operations
• Access elements in PQ by “name”

Ø Maintain additional array Position that stores current 
position of each element in heap

• Operations:
Ø Delete(Position[v])

• Does not increase overall running time
Ø ChangeKey(v, α)

• Changes key of element v to α
• Identify position of element v in array (Position array)
• Change key, heapify
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Key 2 4 5 6 9 20
Value 3542 5143 8712 1264 9123 5954 Process id

Priority

GRAPHS
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Undirected Graphs G = (V, E)
• V = nodes (vertices)
• E = edges between pairs of nodes
• Captures pairwise relationship between 

objects
• Graph size parameters:  n = |V|, m = |E|

27

V = { 1, 2, 3, 4, 5, 6, 7, 8 }
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }
n = 8
m = 11
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Social Networks
• Node: people; Edge: relationship between 2 people
• Everything Bad Is Good for You: How Today's 

Popular Culture Is Actually Making Us Smarter

28

Television shows have 
complex plots, 
complex social networks

Social network of 
Game of Thrones

http://www.cs.duke.edu/csed/harambeenet/modules.html
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Facebook: Visualizing Friends
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http://www.facebook.com/notes/facebook-
engineering/visualizing-friendships/469716398919

World Wide Web
• Web graph

ØNode: web page
Ø Edge: hyperlink from one page to another

30

cnn.com

people.combleacherreport.comnetscape.aol.com time.com

hbo.com

gameofthrones.com

Directed Graph:
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Ecological Food Web
• Food web graph

ØNode = species 
Ø Edge = from prey to 

predator

32

Reference: 
https://www.msu.edu/course/isb/202/ebe
rtmay/images/foodweb.jpg

Directed Graph:
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Graph Applications

33

transportation

Graph
street intersections

Nodes Edges
highways

communication computers fiber optic cables

World Wide Web web pages hyperlinks

social people relationships

food web species predator-prey

software systems functions function calls

scheduling tasks precedence constraints

circuits gates wires
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Graph Representation: Adjacency Matrix
• n�n matrix with Auv = 1 if (u, v) is an edge

Ø Two representations of each edge (symmetric 
matrix)

Ø Space?
ØChecking if (u, v) is an edge?
Ø Identifying all edges?

34

1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 0 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0
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Graph Representation: Adjacency Matrix
• n�n matrix with Auv = 1 if (u, v) is an edge

Ø Two representations of each edge (symmetric 
matrix)

Ø Space: Q(n2)
ØChecking if (u, v) is an edge: Q(1) time
Ø Identifying all edges: Q(n2) time
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1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 0 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0
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Graph Representation: Adjacency List

• Node indexed array of lists

Ø Two representations of each edge

Ø Space?

ØChecking if (u, v) is an edge?

Ø Identifying all edges?

36

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

3 7

no
de

edges
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What are the 
extremes?

Graph Representation: Adjacency List

• Node indexed array of lists

Ø Two representations of each edge

Ø Space = 2m + n = O(m + n)

ØChecking if (u, v) is an edge takes O(deg(u)) time

Ø Identifying all edges takes Q(m + n) time
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degree = number of 
neighbors of u

no
de

edges1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

3 7
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Paths and Connectivity
• Def.  A path in an undirected graph G = (V, E) is a 

sequence P of nodes v1, v2, …, vk-1, vk
Ø Each consecutive pair vi, vi+1 is joined by an edge in E

• Def.  A path is simple if all nodes are distinct
• Def.  An undirected graph is connected if ∀ pair 

of nodes u and v, there is a path between u and v

38

•Short path
•Distance
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