## Objectives

- Graphs
- Graph Connectivity, Traversal
- BFS \& DFS Implementations, Analysis


## Review

- What is a heap?
$>$ When is it useful?
- What is a graph?
$>$ What are two ways to implement a graph?
$>$ What are their space costs?
$>$ What are the operations that can be performed on them?
$>$ What is the [time] cost of those operations?


## Review:

## Graph Representation: Adjacency Matrix

${ }^{-} \mathrm{n} \times \mathrm{n}$ matrix with $\mathrm{A}_{\mathrm{uv}}=1$ if $(\mathrm{u}, \mathrm{v})$ is an edge
$>$ Two representations of each edge (symmetric matrix)
$>$ Space: $\Theta\left(\mathrm{n}^{2}\right)$
$>$ Checking if $(u, v)$ is an edge: $\Theta(1)$ time
$>$ Identifying all edges: $\Theta\left(\mathrm{n}^{2}\right)$ time


## Graph Representation: Adjacency List

- Node indexed array of lists
> Two representations of each edge
$>$ Space?
What are the
$>$ Checking if ( $u, v$ ) is an edge?
$>$ Identifying all edges? extremes?
edges


Jan 28, 2019


## Graph Representation: Adjacency List

- Node indexed array of lists
$>$ Two representations of each edge degree $=$ number of
$\Rightarrow$ Space $=2 \mathrm{~m}+\mathrm{n}=\mathrm{O}(\mathrm{m}+\mathrm{n})$
$>$ Checking if $(u, v)$ is an edge takes $\mathrm{O}(\operatorname{deg}(\mathrm{u}))$ time
> Identifying all edges takes $\Theta(m+n)$ time




## Paths and Connectivity

- Def. A path in an undirected graph $G=(V, E)$ is a sequence $P$ of nodes $v_{1}, v_{2}, \ldots, v_{k-1}, v_{k}$
$>$ Each consecutive pair $v_{i}, v_{i+1}$ is joined by an edge in E
- Def. A path is simple if all nodes are distinct
- Def. An undirected graph is connected if $\forall$ pair of nodes $u$ and $v$, there is a path between $u$ and $v$

(6)

(13)
- Short path
- Distance


## Cycles

- Def. A cycle is a path $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}-1}, \mathrm{v}_{\mathrm{k}}$ in which $v_{1}=v_{k}, k>3$, and the first $k-1$ nodes are all distinct

cycle $C=I-2-4-5-3-I$


## TREES

## Trees

- Def. An undirected graph is a tree if it is connected and does not contain a cycle
- Simplest connected graph
> Deleting any edge from a tree will disconnect it



## Rooted Trees

- Given a tree T, choose a root node $r$ and orient each edge away from $r$
- Models hierarchical structure

a tree
 the same tree, rooted at 1


## Rooted Trees

Why $n-1$ edges?
$>$ Each non-root node has an edge to its parent

a tree

the same tree, rooted at 1

## Trees

- Theorem. Let G be an undirected graph on $n$ nodes. Any two of the following statements imply the third:
$>\mathrm{G}$ is connected
$>G$ does not contain a cycle
$>\mathrm{G}$ has $n$-1 edges



## Phylogeny Trees

- Describe evolutionary history of species
 with mushrooms, trees, and bacteria


## GRAPH CONNECTIVITY \& TRAVERSAL

## Connectivity

- s-t connectivity problem. Given nodes $s$ and $t$, is there a path between $s$ and $t$ ?
- s-t shortest path problem. Given nodes $s$ and $t$, what is the length of the shortest path between $s$ and $t$ ?
- Applications
> Facebook
$>$ Maze traversal
$>$ Kevin Bacon number
$>$ Spidering the web
$>$ Fewest number of hops in a communication network


## Application: Connected Component

- Find all nodes reachable from $s$

- Connected component containing node 1 is $\{1,2,3,4,5,6,7,8\}$


## Application: Flood Fill

- Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue
$>$ Node: pixel
> Edge: two neighboring lime pixels
$>$ Blob: connected component of lime pixels



## Application: Flood Fill

- Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue
$>$ Node: pixel
> Edge: two neighboring lime pixels
> Blob: connected component of lime pixels



## My Facebook Friends

Created with Social Graph


## A General Algorithm

R will consist of nodes to which $s$ has a path $R=\{s\}$
while there is an edge ( $u, v$ ) where $u \in R$ and $v \notin R$ add $v$ to $R$


- $R$ will be the connected component containing s
- Algorithm is underspecified

In what order should we consider the edges?

## Possible Orders

- Breadth-first
- Depth-first


## Breadth-First Search

- Intuition. Explore outward from $s$ in all possible directions (edges), adding nodes one "layer" at a time
- Algorithm

$$
>L_{0}=\{\mathrm{s}\}
$$


$>L_{1}=$ all neighbors of $L_{0}$
$>L_{2}=$ all nodes that have an edge to a node in $L_{1}$ and do not belong to $L_{0}$ or $L_{1}$
$>\mathrm{L}_{\mathrm{i}+1}=$ all nodes that have an edge to a node in $\mathrm{L}_{\mathrm{i}}$ and do not belong to an earlier layer

## Run BFS on This Graph



$$
s=1
$$

## Example of Breadth-First Search

$$
s=1
$$





Creates a tree
-- is a node in the graph that is not in the tree

## Breadth-First Search

Theorem.
For each $i, L_{i}$ consists of all nodes at distance exactly i from $s$.
There is a path from $s$ to $t$ iff $t$ appears in some layer.

-What does this theorem mean?

- Can we determine the distance between s and t ?


## Breadth-First Search

- Theorem. For each $i, L_{i}$ consists of all nodes at distance exactly $i$ from $s$. There is a path from $s$ to $t$ iff $t$ appears in some layer.
$>$ Length of shortest path to $t$ from $s$, is the $i$ from $\mathrm{L}_{\mathrm{i}}$
$>$ All nodes reachable from $s$ are in $\mathrm{L}_{1}, \mathrm{~L}_{2}, \ldots, \mathrm{~L}_{\mathrm{n}-1}$



## Breadth-First Search

- Property. Let T be a BFS tree of $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, and let $(x, y)$ be an edge of $G$.
Then the level of $x$ and $y$ differ by at most 1 .


If $x$ is in $L_{i}$,
then $y$ must be in ???

## Breadth-First Search

- Property. Let $T$ be a BFS tree of $G=(V, E)$, and let ( $x, y$ ) be an edge of $G$. Then the level of $x$ and y differ by at most 1.



## If x is in $\mathrm{L}_{\mathrm{i}}$, then $y$ must be in

- $\mathrm{L}_{\mathrm{i}-1}: \mathrm{y}$ was reached before x
- $\mathbf{L}_{\mathbf{i}}$ : a common parent of x and $y$ was reached first
- $\mathbf{L}_{i+1}: y$ will be added in the next layer


## Connected Component: BFS

- Find all nodes reachable from $s$

In general....
R will consist of nodes to which $s$ has a path $R=\{s\}$
while there is an edge ( $u, v$ ) where $u \in R$ and $v \notin R$ add $v$ to $R$

In what order does BFS consider edges?

## Connected Component: BFS vs DFS

- Find all nodes reachable from $s$

In general....
R will consist of nodes to which $s$ has a path $R=\{s\}$
while there is an edge ( $u, v$ ) where $u \in R$ and $v \notin R$ add v to R

- Theorem. Upon termination, R is the connected component containing s
$>B F S=$ explore in order of distance from $s$
$>$ DFS $=$ explore until hit "deadend"


## Depth-First Search

- Need to keep track of where you've been

- When reach a "dead-end" (already explored all neighbors), backtrack to node with unexplored neighbor
- Algorithm:

DFS(u): Mark $u$ as "Explored" and add $u$ to $R$ For each edge ( $u, v$ ) incident to $u$

If $v$ is not marked "Explored" then DFS(v)

## Depth-First Search

- How does DFS work on this graph?
$>$ Starting from node 1



## Looking Ahead

- Monday, 11:59 p.m.: journal - Chapter 2.5, 3.1
- Friday: Problem Set 3 due

