
1/30/19

1

Objectives
• Finding Connected Components

ØBreadth-first
ØDepth-first

• Implementing the algorithms

Jan 30, 2019 1CSCI211 - Sprenkle

Review: Graphs
• What are the two ways to represent graphs?
• What is the space cost for the adjacency list?
• What is a connected component?

ØWhat are two ways to find a connected component?
ØHow are their results similar? Different?

Jan 30, 2019 CSCI211 - Sprenkle 2

1/30/19

2

Review: Connected Component
• Find all nodes reachable from s

• Theorem. Upon termination, R is the connected
component containing s

Jan 30, 2019 CSCI211 - Sprenkle 3

In general….
R will consist of nodes to which s has a path
R = {s}
while there is an edge (u,v) where u∈R and v∉R

add v to R

How can we explore the nodes?

Review: Finding Connected Components
• Find all nodes reachable from s

Jan 30, 2019 CSCI211 - Sprenkle 4

In general….
R will consist of nodes to which s has a path
R = {s}
while there is an edge (u,v) where u∈R and v∉R

add v to R

In what order does BFS consider edges?
What is the outcome?

1/30/19

3

Review: Breadth-First Search

• Intuition. Explore outward from s in all possible
directions (edges), adding nodes one “layer” at a
time

• Algorithm
Ø L0 = { s }

Ø L1 = all neighbors of L0

Ø L2 = all nodes that have an edge to a node in L1 and
do not belong to L0 or L1

Ø Li+1 = all nodes that have an edge to a node in Li and
do not belong to an earlier layer

Jan 30, 2019 CSCI211 - Sprenkle 5

s L1 L2 L n-1

L0

Review: Example of Breadth-First Search

Jan 30, 2019 CSCI211 - Sprenkle 6

L0

L1

L2

L3

s = 1

Creates a tree
-- is a node in the graph that is not in the tree

1/30/19

4

Review: Breadth-First Search
• Property. Let T be a BFS tree of G = (V, E), and

let (x, y) be an edge of G. Then the level of x and
y differ by at most 1.

Jan 30, 2019 CSCI211 - Sprenkle 7

G:

If x is in Li,
then y must be in

• Li-1: y was reached before x
• Li: a common parent of x

and y was reached first
• Li+1: y will be added in the

next layer

Review: Depth-First Search
• Need to keep track of where you’ve

been
• When reach a “dead-end” (already

explored all neighbors), backtrack to
node with unexplored neighbor

• Algorithm:

Jan 30, 2019 CSCI211 - Sprenkle

DFS(u):
Mark u as “Explored” and add u to R
For each edge (u, v) incident to u

If v is not marked “Explored” then
DFS(v)

8

1/30/19

5

Depth-First Search
• How does DFS work on this graph?

Ø Starting from node 1

Jan 30, 2019 CSCI211 - Sprenkle 9

DFS vs BFS
• Compare the resulting trees

Jan 30, 2019 CSCI211 - Sprenkle 10

1/30/19

6

DFS vs BFS: Tree Comparison
• BFS

Ø Bushy
• DFS

Ø Spindly

Jan 30, 2019 CSCI211 - Sprenkle 11

DFS Analysis
• Let T be a depth-first search tree, let x and y be

nodes in T, and let (x, y) be an edge of G that is
not an edge of T. Then one of x or y is an
ancestor of the other in T.

Jan 30, 2019 CSCI211 - Sprenkle 12

“equivalent” of BFS: connected nodes are at most one layer apart

What is an example of such an edge
from the example we did?

1/30/19

7

DFS Analysis
• Let T be a depth-first search tree, let x and y be

nodes in T, and let (x, y) be an edge of G that is not
an edge of T. Then one of x or y is an ancestor of
the other in T.

• Proof.
Ø Suppose that x-y is an edge in G but not in T. (From

problem statement)
Ø WLOG, assume that DFS reaches x before y
Ø When edge x-y is considered in the DFS algorithm, we

don’t add it to T (from problem statement), which means
that y must have been explored.

Ø But, since we reached x first, y had to be discovered
between invocation and end of the recursive call DFS(x)
• i.e., y is a descendent of x

Jan 30, 2019 CSCI211 - Sprenkle 13

IMPLEMENTING ALGORITHMS

Jan 30, 2019 CSCI211 - Sprenkle 14

1/30/19

8

Review: Breadth-First Search

• Intuition. Explore outward from s in all possible
directions (edges), adding nodes one “layer” at a
time

• Algorithm
Ø L0 = { s }

Ø L1 = all neighbors of L0

Ø L2 = all nodes that have an edge to a node in L1 and
do not belong to L0 or L1

Ø Li+1 = all nodes that have an edge to a node in Li and
do not belong to an earlier layer

Jan 30, 2019 CSCI211 - Sprenkle 15

s L1 L2 L n-1

L0

Implementing BFS
• What do we need as input?
• What do we need to model?

ØHow will we model that?

Jan 30, 2019 CSCI211 - Sprenkle 16

1/30/19

9

Implementing BFS
• Input: Graph as an adjacency list, starting node
• Discovered array
• Maintain layers in separate lists, L[i]
• BFS Tree T

Jan 30, 2019 CSCI211 - Sprenkle 17

Implementing BFS
• Graph: Adjacency list
• Discovered array
• Maintain layers L[i], BFS Tree T

Jan 30, 2019 CSCI211 - Sprenkle

BFS(s, G):
Discovered[v] = false, for all v
Discovered[s] = true
L[0] = {s}
layer counter i = 0
BFS tree T = {}
while L[i] != {}

L[i+1] = {}
for each node u Î L[i]

Consider each edge (u,v) incident to u
if Discovered[v] == false then

Discovered[v] = true
Add edge (u, v) to tree T
Add v to the list L[i + 1]

i+=1

L[i]
representation?

18

What does this
stopping condition

mean?

1/30/19

10

BFS Analysis

Jan 30, 2019 CSCI211 - Sprenkle 19

BFS(s, G):
Discovered[v] = false, for all v
Discovered[s] = true
L[0] = {s}
layer counter i = 0
BFS tree T = {}
while L[i] != {}

L[i+1] = {}
For each node u Î L[i]

Consider each edge (u,v) incident to u
if Discovered[v] == false then

Discovered[v] = true
Add edge (u, v) to tree T
Add v to the list L[i + 1]

i+=1

• L[i] representation? List, queue, or stack
- Doesn’t matter because algorithm can consider nodes in any order

What is the running time?

Given: s – start node, G – adjacency list

BFS(s, G):
Discovered[v] = false, for all v
Discovered[s] = true
L[0] = {s}
layer counter i = 0
BFS tree T = {}
while L[i] != {}

L[i+1] = {}
For each node u Î L[i]

Consider each edge (u,v) incident to u
if Discovered[v] == false then

Discovered[v] = true
Add edge (u, v) to tree T
Add v to the list L[i + 1]

i+=1

Analysis

Jan 30, 2019 CSCI211 - Sprenkle

A
t

m
os

t
n

A
t

m
os

t
n-

1

O(n3)

n

20

A
t

m
os

t
n-

1

1/30/19

11

BFS(s, G):
Discovered[v] = false, for all v
Discovered[s] = true
L[0] = {s}
layer counter i = 0
BFS tree T = {}
while L[i] != {}

L[i+1] = {}
For each node u Î L[i]

Consider each edge (u,v) incident to u
if Discovered[v] == false then

Discovered[v] = true
Add edge (u, v) to tree T
Add v to the list L[i + 1]

i+=1

Analysis: Tighter Bound

Jan 30, 2019 CSCI211 - Sprenkle

A
t

m
os

t
nO(n2)

n

21

A
t

m
os

t
n-

1

Because we’re going to look at each node at most once

BFS(s, G):
Discovered[v] = false, for all v
Discovered[s] = true
L[0] = {s}
layer counter i = 0
BFS tree T = {}
while L[i] != {}

L[i+1] = {}
For each node u Î L[i]

Consider each edge (u,v) incident to u
if Discovered[v] == false then

Discovered[v] = true
Add edge (u, v) to tree T
Add v to the list L[i + 1]

i+=1

Analysis: Even Tighter Bound

Jan 30, 2019 CSCI211 - Sprenkle

O(deg(u))

A
t

m
os

t
n

n

à O(n+m)
22

SuÎV deg(u) = 2m

1/30/19

12

Implementing DFS
• What do we need as input?
• What do we need to model?

ØHow will we model that?

ØPseudo code

Jan 30, 2019 CSCI211 - Sprenkle 23

DFS(u):
Mark u as “Explored” and add u to R
For each edge (u, v) incident to u

If v is not marked “Explored” then
DFS(v)

Implementing DFS
• Keep nodes to be processed in a stack

Jan 30, 2019 CSCI211 - Sprenkle

DFS(s, G):
Initialize S to be a stack with one element s
Explored[v] = false, for all v
Parent[v] = 0, for all v
DFS tree T = {}
while S != {}

Take a node u from S
if Explored[u] = false

Explored[u] = true
Add edge (u, Parent[u]) to T (if u ≠ s)
for each edge (u, v) incident to u

Add v to the stack S
Parent[v] = u

24

What is the runtime?
How many times is a node added/removed from the stack?

1/30/19

13

DFS(s, G):
Initialize S to be a stack with one element s
Explored[v] = false, for all v
Parent[v] = 0, for all v
DFS tree T = {}
while S != {}

Take a node u from S
if Explored[u] = false

Explored[u] = true
Add edge (u, Parent[u]) to T (if u ≠ s)
for each edge (u, v) incident to u

Add v to the stack S
Parent[v] = u

Analyzing DFS

Jan 30, 2019 CSCI211 - Sprenkle

deg(u)

O(n+m)

25

O(n)

A node is added/removed from the stack 2* deg(u)
All nodes are added 2m = O(m) times

Looking Ahead
• PS3 due Friday

Jan 30, 2019 CSCI211 - Sprenkle 26

