Objectives

- Wrap up: Implementing BFS and DFS
- Graph Application: Bipartite Graphs

> Turn in your problem set

Review

- What are two ways to find a connected component?
>How are their results similar? Different?
- What was the runtime for BFS?
- What is the runtime for DFS?
> Review what you have so far...

Review: Breadth-First Search

Intuition. Explore outward from s in all possible directions (edges), adding nodes one "layer" at a time

- Algorithm
$>\mathrm{L}_{0}=\{\mathrm{s}\}$

$>L_{1}=$ all neighbors of L_{0}
$>L_{2}=$ all nodes that have an edge to a node in L_{1} and do not belong to L_{0} or L_{1}
$>\mathrm{L}_{\mathrm{i}+1}=$ all nodes that have an edge to a node in L_{i} and do not belong to an earlier layer

Analysis: Tighter Bound

Because we're going to look at each node at most once

Analysis: Even Tighter Bound

$$
\rightarrow O(\mathrm{n}+\mathrm{m})
$$

Implementing DFS

- Keep nodes to be processed in a stack

```
DFS(s,G):
    Initialize S to be a stack with one element s
    Explored[v] = false, for all v
    Parent[v] = 0, for all v
    DFS tree T = {}
    while S != {}
        Take a node u from S
        if Explored[u] = false
            Explored[u] = true
            Add edge (u, Parent[u]) to T (if u\not=s)
            for each edge (u, v) incident to u
            Add v to the stack S
            Parent[v] = u
```

What is the runtime?
How many times is a node added/removed from the stack?

Analyzing DFS

$$
\mathrm{O}(\mathrm{n}+\mathrm{m})
$$

```
DFS(s, G):
    Initialize S to be a stack with one element s
    Explored[v] = false, for all v]OO(n)
    DFS tree T = {}
    while S != {}
        Take a node u from S
        if Explored[u] = false
            Explored[u] = true
            Add edge (u, Parent[u]) to T (if u = s)
    deg(u) for each edge (u, v) incident to u
                Add v to the stack S
                Parent[v] = u
```

A node is added/removed from the stack $2^{*} \operatorname{deg}(\mathrm{u})$ All nodes are added $2 m=O(m)$ times

Analyzing

Finding All Connected Components

- How can we find the set of all connected components of the graph?

```
R* = set of connected components (a set of sets)
while there is a node that does not belong to R*
    select s not in R*
    R = {s}
    while there is an edge (u,v) where }u\inR\mathrm{ and }v\not\in
```

 add \(v\) to R
 But the inner loop is \(\mathrm{O}(\mathrm{m}+\mathrm{n})\) !
 How can this RT be possible?
 Add R to \(\mathrm{R}^{*}\)
 Claim: Running time is $\mathrm{O}(\mathrm{m}+\mathrm{n})$

Consider: Finding All Connected Components for This Graph

What would the process look like?
What is the runtime for the major steps?

Set of All Connected Components

- How can we find the set of all connected components of the graph?

```
R* = set of connected components (a set of sets)
while there is a node that does not belong to R*
    select s not in R*
    R = {s}
    while there is an edge (u,v) where u\inR and v}v
        add v to R
    Add R to R*
Imprecision in the running time of inner loop: \(O(m+n)\)
while there is an edge \((u, v)\) where \(u \in R\) and \(v \notin R\) add \(v\) to R
Add R to \(\mathrm{R}^{*}\)
But that's \(m\) and \(n\) of the connected component, let's say \(m_{i}\) and \(n_{i}\). \(\mathrm{\Sigma}_{\mathrm{i}} \mathrm{O}\left(\mathrm{m}_{\mathrm{i}}+\mathrm{n}_{\mathrm{i}}\right)=\mathrm{O}(\mathrm{m}+\mathrm{n})\)
Where \(i\) is the subscript of the connected component

\section*{Consider: Finding All Connected Components for This Graph}

- Find each connected component
>Runtime: that connected component's nodes and edges

\section*{BIPARTITE GRAPHS}

\section*{Bipartite Graphs}
- Def. An undirected graph \(G=(\mathrm{V}, \mathrm{E})\) is bipartite if the nodes can be colored red or blue such that every edge has one red and one blue end
\(>\) Generally: vertices divided into sets \(X\) and \(Y\)
Applications:
> Stable matching:
- men = red, women = blue
\(>\) Scheduling:
- machines = red, jobs = blue


\section*{Testing Bipartiteness}
- Given a graph G, is it bipartite?
- Many graph problems become:
\(>\) Easier if underlying graph is bipartite (e.g., matching)
\(>\) Tractable if underlying graph is bipartite (e.g., independent set)
- Before designing an algorithm, need to understand structure of bipartite graphs


How Can We Determine if a Graph is Bipartite?
- Given a connected graph

Why connected?
1. Color one node red
- Doesn't matter which color (Why?)
\(>\) What should we do next?

- How will we know when we're finished?
- What does this process sound like?

\section*{An Obstruction to Bipartiteness}
- Lemma. If a graph G is bipartite, it cannot contain an odd-length cycle.

bipartite (2-colorable)

not bipartite (not 2-colorable)

\section*{An Obstruction to Bipartiteness}
- Lemma. If a graph \(G\) is bipartite, it cannot contain an odd-length cycle.
- Pf. Not possible to 2-color the odd cycle, let alone G.

bipartite (2-colorable)

How Can We Determine if a Graph is Bipartite?
- Given a connected graph
> Color one node red
- Doesn't matter which color (Why?)
\(>\) What should we do next?
- How will we know that we're finished?
- What does this process sound like?
> BFS: alternating colors, layers

How can we implement the algorithm?


\section*{Implementing Algorithm}

Modify BFS to have a Color array
When add \(v\) to list \(L[i+1]\)
\(>\) Color[v] = red if \(\mathrm{i}+1\) is even
\(>\) Color[v] = blue if \(\mathrm{i}+1\) is odd


What is the running time of this algorithm? \(\mathbf{O}(\mathbf{n + m})\)

Marks a change in how we think about algorithms
Starting to apply known algorithms to solve new problems

\section*{Analyzing Algorithm's Correctness}

Lemma. Let G be a connected graph, and let \(\mathrm{L}_{0}, \ldots\), \(L_{k}\) be the layers produced by BFS starting at node \(s\). Exactly one of the following holds:
\(>\) (i) No edge of G joins two nodes of the same layer \(\Rightarrow \mathrm{G}\) is bipartite
\(>\) (ii) An edge of \(G\) joins two nodes of the same layer
\(\Longrightarrow\) G contains an odd-length cycle and hence is not bipartite

Case (i):


\section*{Analyzing Algorithm's Correctness}

Lemma. Let G be a connected graph, and let \(\mathrm{L}_{0}, \ldots\), \(L_{k}\) be the layers produced by BFS starting at node \(s\). Exactly one of the following holds:
\(>\) (i) No edge of \(G\) joins two nodes of the same layer \(\Rightarrow \mathrm{G}\) is bipartite
- Pf. (i)
\(>\) Suppose no edge joins two nodes in the same layer
\(>\) Implies all edges join nodes on adjacent level
> Bipartition
>red = nodes on odd levels
\(>\) blue = nodes on even levels


\section*{Analyzing Algorithm's Correctness}

Lemma. Let G be a connected graph, and let \(\mathrm{L}_{0}, \ldots\), \(L_{k}\) be the layers produced by BFS starting at node \(s\). Exactly one of the following holds:
(ii) An edge of \(G\) joins two nodes of the same layer \(\rightarrow\)

G contains an odd-length cycle and hence is not bipartite
Pf. (ii)
\(>\) Suppose \((x, y)\) is an edge with \(x, y\) in same level \(\mathrm{L}_{\mathrm{j}}\).
\(\Rightarrow\) Let \(\mathrm{z}=\mathrm{Ica}(\mathrm{x}, \mathrm{y})=\) lowest common ancestor
\(>\) Let \(L_{i}\) be level containing \(z\)
\(>\) Consider cycle that takes edge from \(x\) to \(y\), then path \(\mathrm{y} \rightarrow \mathrm{z}\), then path from \(\mathrm{z} \rightarrow \mathrm{x}\)


\section*{Analyzing Algorithm's Correctness}
- Lemma. Let G be a connected graph, and let \(\mathrm{L}_{0}, \ldots\), \(L_{k}\) be the layers produced by BFS starting at node \(s\). Exactly one of the following holds:
\(>\) (ii) An edge of \(G\) joins two nodes of the same layer \(\rightarrow\) G contains an odd-length cycle and hence is not bipartite
- Pf. (ii)
\(>\) Suppose \((\mathrm{x}, \mathrm{y})\) is an edge with \(\mathrm{x}, \mathrm{y}\) in same level \(\mathrm{L}_{\mathrm{j}}\).
\(>\) Let \(\mathrm{z}=\mathrm{Ica}(\mathrm{x}, \mathrm{y})=\) lowest common ancestor
\(\Rightarrow\) Let \(\mathrm{L}_{\mathrm{i}}\) be level containing z
\(>\) Consider cycle that takes edge from x to y , then path \(y \rightarrow z\), then path \(z \rightarrow x\)
\(>\) Its length is \(\underbrace{1}+\underbrace{(\mathrm{j}-\mathrm{i})}+\underbrace{(\mathrm{j}-\mathrm{i})}\), which is odd


\section*{An Obstruction to Bipartiteness}
- Corollary. A graph G is bipartite iff it contains no odd length cycle.

bipartite (2-colorable)

not bipartite (not 2-colorable)

\section*{Graph Summary So Far}

What do we know about graphs?

\section*{Graph Summary So Far}
- What do we know about graphs?
\(>\) Representation: Adjacency List, Space O(n+m)
\(>\) Connectivity
- BFS, DFS - O(n+m)
- Can apply BFS for Bipartite - O(n+m)

Second verse, similar to the first.
But directed!

\section*{DIRECTED GRAPHS}

\section*{Directed Graphs G \(=(\mathrm{V}, \mathrm{E})\)}

Edge ( \(u, v\) ) goes from node \(u\) to node \(v\)

- Example: Web graph - hyperlink points from one web page to another
- Directedness of graph is crucial
\(>\) Modern web search engines exploit hyperlink structure to rank web pages by importance

\section*{Representing Directed Graphs}
- For each node, keep track of
\(>\) Out edges (where links go)
\(>\) In edges (from where links come in)
\(>\) Space required?
- Could only store out edges
> Figure out in edges with increased computation/time
> Useful to have both in and out edges

\section*{Rock Paper Scissors Lizard Spock}


\title{
CONNECTIVITY IN DIRECTED GRAPHS
}

\section*{Graph Search}
- How does reachability change with directed graphs?

- Example: Web crawler
1. Start from web page s.
2. Find all web pages linked from s , either directly or indirectly.

\section*{Graph Search}
- Directed reachability. Given a node \(s\), find all nodes reachable from \(s\).
- Directed \(s\) - \(t\) shortest path problem. Given two nodes \(s\) and \(t\), what is the length of the shortest path between \(s\) and \(t\) ?
\(>\) Not necessarily the same as \(t \rightarrow s\) shortest path
- Graph search. BFS and DFS extend naturally to directed graphs
\(>\) Trace through out edges
\(>\) Run in \(\mathrm{O}(\mathrm{m}+\mathrm{n})\) time

\section*{Problem}
- Find all nodes with paths to \(s\)
\(>\) Rather than paths from \(s\) to other nodes

\section*{Problem/Solution}
- Problem. Find all nodes with paths to \(s\)
- Solution. Run BFS on in edges instead of out edges```

