
2/4/19

1

Objectives
• Directed Graphs
• Topological Orderings of DAGs

Feb 4, 2019 1CSCI211 - Sprenkle

Review
• How do we represent directed graphs?
• With directed graphs, we have two different 

reachability problems.  What are they?
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Review: Representing Directed Graphs
• For each node, keep track of

ØOut edges (where links go)
Ø In edges (from where links come in)
Ø Space required: O(n+m)

• Could only store out edges
Ø Figure out in edges with increased computation/time
ØUseful to have both in and out edges

Feb 1, 2019 CSCI211 - Sprenkle 3

Review: Graph Search

• Directed reachability.  Given a node s, find all 
nodes reachable from s.

• Directed s-t shortest path problem.  Given two 
nodes s and t, what is the length of the shortest 
path between s and t?
ØNot necessarily the same as tàs shortest path

• Graph search.  BFS and DFS extend naturally to 
directed graphs
Ø Trace through out edges
ØRun in O(m+n) time
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Review: Problem/Solution
• Problem. Find all nodes with paths to s
• Solution.  Run BFS on in edges instead of out 

edges
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DAGS AND 
TOPOLOGICAL ORDERING
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Directed Acyclic Graphs
• Def.  A DAG is a directed graph that contains 

no directed cycles.
• Example.  Precedence constraints: 

edge (vi, vj) means vi must precede vj
ØCourse prerequisite graph: 

course vi must be taken before vj

ØCompilation: module vi must be compiled before vj

ØPipeline of computing jobs: output of job vi needed 
to determine input of job vj
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v2 v3

v6 v5 v4

v7 v1

a DAG:

Problem: Valid Ordering

• Given a set of tasks with dependencies, 

what is a valid order in which the tasks could be 

performed?
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Topological Ordering
• Problem: Given a set of tasks with dependencies, 

what is a valid order in which the tasks could be 
performed?

• Def.  A topological order of a directed graph
G = (V, E) is an ordering of its nodes as v1, v2, …, vn
such that for every directed edge (vi, vj),  i < j.
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a DAG
a topological ordering
All edges point “forward”

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

Coordinating labeling of nodes, but numbering is not known for just DAG

Topological Ordering Example
• Given a set of tasks with dependencies, 

what is a valid order in which the tasks could be 
performed?
Ø Example: Course prerequisites

• Values of the nodes vs. their ids

• A topological order of a directed graph
G = (V, E) is an ordering of its nodes as 
v1, v2, …, vn such that for every directed edge
(vi, vj),  i < j.
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Towards a Solution

• Start by showing that if G has a topological 

order, then G is a DAG

• Eventually, we’ll show the other direction: 

if G is a DAG, then G has a topological order
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Directed Acyclic Graphs
• Lemma. If G has a topological order, 

then G is a DAG.
• Proof plan: Try to show that G has a topological 

order even though G has a cycle
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v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

Why isn’t this valid?
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DAGs & Topological Orderings
• Lemma.  If G has a topological order, then G is a DAG.
• Pf.  (by contradiction)

Ø Suppose that G has a topological order v1, …, vn and 
that G also has a directed cycle C.
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v1 vi vj vn

the directed cycle C

the supposed topological order: v1, …, vn

What can we say about that cycle 
and the nodes, edges in the cycle?

DAGs & Topological Orderings
• Lemma.  If G has a topological order, then G is a DAG.
• Pf.  (by contradiction)

Ø Suppose that G has a topological order v1, …, vn and 
that G also has a directed cycle C.

Ø Let vi be the lowest-indexed node in C, and let vj be the node on C 
just before vi; thus (vj, vi) is an edge

Ø By our choice of i (lowest-indexed node), i < j
Ø Since (vj, vi) is an edge and v1, …, vn is a topological order, we must 

have j < i
• a contradiction. ▪
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v1 vi vj vn

the directed cycle C

the supposed topological order: v1, …, vn
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DAGs and Topological Ordering

• Does every DAG have a topological ordering?

Ø If so, how do we compute one?
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DAGs and Topological Ordering
• Does every DAG have a topological ordering?

Ø If so, how do we compute one?

• What do we need to be able to create a 
topological ordering?
ØWhat are some characteristics of this graph?
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DAGs and Topological Ordering
• Does every DAG have a topological ordering?

Ø If so, how do we compute one?

• What do we need to be able to create a 
topological ordering?
ØWhat are some characteristics of this graph?

Feb 4, 2019 CSCI211 - Sprenkle 17

v1 v2 v3 v4 v5 v6 v7

Need a place to start:
a node with no incoming edges 

(no dependencies)
Note that both v1 and v2

have no incoming edges

Towards a Topological Ordering
• Does every DAG have a topological ordering?
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Do we know there is always a 
node with no incoming edges?

Goal: Find an algorithm for finding the TO
Idea: 1st node is one with no incoming edges
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Towards a Topological Ordering

• Lemma. If G is a DAG, 

then G has a node with no incoming edges

ØWe need this as our starting point of the topological 

ordering
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How to prove?

Towards a Topological Ordering
• Lemma. If G is a DAG, 

then G has a node with no incoming edges

• Proof idea: Consider if there is no node without 
incoming edges
ØRestated: All nodes have incoming edges.
ØWhat contradiction are we looking for?

Feb 4, 2019 CSCI211 - Sprenkle 20



2/4/19

11

Towards a Topological Ordering
• Lemma.  If G is a DAG,

then G has a node with no incoming edges.
• Pf.  (by contradiction)

Ø Suppose that G is a DAG and every node has at least one incoming 
edge

Ø Pick any node v, and follow edges backward from v.
• Since v has at least one incoming edge (u, v), we can walk backward to 

u
Ø Since u has at least one incoming edge (t, u), we can walk backward 

to t
Ø Repeat until we visit a node, say w, twice

• Has to happen at least by step n+1 (Why?)
Ø Let C denote the sequence of nodes encountered between 

successive visits to w.  C is a cycle, which is a contradiction to G is a 
DAG  �
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w t u v

Putting it all together: 
Creating a topological order
• Given a DAG, find its topological order
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Ideas?
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Topological Ordering Algorithm
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Find a node v with no incoming edges
Order v first
Delete v from G
Recursively compute a topological ordering of G-{v}

and append this order after v

How do we know this works?

Directed Acyclic Graphs
• Lemma.  If G is a DAG, then G has a topological 

ordering.
• Pf.  (by induction on n)

ØBase case:

Feb 4, 2019 CSCI211 - Sprenkle 24

v



2/4/19

13

DAG

Directed Acyclic Graphs
• Lemma.  If G is a DAG, then G has a topological 

ordering.
• Pf.  (by induction on n)

ØBase case: true if n = 1
Ø Induction Hypothesis: a DAG with k nodes > 1 has a 

topological ordering
ØGiven a DAG on k+1 nodes, find a node v with no 

incoming edges

Feb 4, 2019 CSCI211 - Sprenkle 25

DAG
v

Directed Acyclic Graphs
• Lemma.  If G is a DAG, then G has a topological ordering.
• Pf.  (by induction on n)

Ø Base case:  true if n = 1
Ø Induction Hypothesis: a DAG with k nodes > 1 has a 

topological ordering
Ø Given a DAG on k+1 nodes, find a node v with no incoming 

edges
Ø G - { v } is a DAG because deleting v 

cannot create cycles
Ø Also know, by inductive hypothesis, 

G - { v } has a topological ordering
Ø Place v first in topological ordering 
Ø Append nodes of G - { v } in topological order. 

• valid since v has no incoming edges.   �
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Topological Ordering Algorithm
• Lemma.  If G is a DAG, 

then G has a topological ordering.
• Algorithm:
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Find a node v with no incoming edges
Order v first
Delete v from G
Recursively compute a topological ordering of G-{v}

and append this order after v

Topological Ordering Algorithm:  
Example

28

v1

Topological order:  

v2 v3

v6 v5 v4

v7 v1
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Topological Ordering Algorithm:  
Example

29

v2

Topological order:  v1

v2 v3

v6 v5 v4

v7
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Topological Ordering Algorithm:  
Example

30

v3

Topological order:  v1, v2

v3

v6 v5 v4

v7
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Topological Ordering Algorithm:  
Example

31

v4

Topological order:  v1, v2, v3

v6 v5 v4

v7
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Topological Ordering Algorithm:  
Example

32

v5

Topological order:  v1, v2, v3, v4

v6 v5

v7
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Topological Ordering Algorithm:  
Example

33

v6

Topological order:  v1, v2, v3, v4, v5

v6

v7
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Topological Ordering Algorithm:  
Example

34

v7

Topological order:  v1, v2, v3, v4, v5, v6

v7
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Topological Ordering Algorithm:  
Example

35

Topological order:  v1, v2, v3, v4, v5, v6, v7.

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7
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Topological Order Runtime

• Where are the costs?
• How would we implement?
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Find a node v with no incoming edges
Order v first
Delete v from G
Recursively compute a topological ordering of G-{v}

and append this order after v
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Topological Order Runtime

• Find a node without incoming edges and delete 
it: O(n)

• Repeat on all nodes
à O(n2)
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Can we do better?

Find a node v with no incoming edges
Order v first
Delete v from G
Recursively compute a topological ordering of G-{v}

and append this order after v

O(n)

O(n)
O(n)

O(1)

O(1)

Topological Sorting Algorithm:
Running Time

• Theorem. Find a topological order in O(m + n) 
time

• Pf.  
ØMaintain the following information:

• count[w] = remaining number of incoming edges
• S = set of remaining nodes with no incoming edges

Ø Initialization: O(m + n) via single scan through graph
ØAlgorithm: 

• Select a node v from S, remove v from S
• Decrement count[w] for all edges from v to w

Ø Add w to S if count[w] = 0
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Looking Ahead
• Wiki due Tuesday at 11:59 p.m.

Ø Sections 3.2-3.6
• Problem Set 4 due Friday
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