
2/4/19

1

Objectives
• Directed Graphs
• Topological Orderings of DAGs

Feb 4, 2019 1CSCI211 - Sprenkle

Review
• How do we represent directed graphs?
• With directed graphs, we have two different

reachability problems. What are they?

Feb 4, 2019 CSCI211 - Sprenkle 2

2/4/19

2

Review: Representing Directed Graphs
• For each node, keep track of

ØOut edges (where links go)
Ø In edges (from where links come in)
Ø Space required: O(n+m)

• Could only store out edges
Ø Figure out in edges with increased computation/time
ØUseful to have both in and out edges

Feb 1, 2019 CSCI211 - Sprenkle 3

Review: Graph Search

• Directed reachability. Given a node s, find all
nodes reachable from s.

• Directed s-t shortest path problem. Given two
nodes s and t, what is the length of the shortest
path between s and t?
ØNot necessarily the same as tàs shortest path

• Graph search. BFS and DFS extend naturally to
directed graphs
Ø Trace through out edges
ØRun in O(m+n) time

Feb 4, 2019 CSCI211 - Sprenkle 4

1 2

54

7

3

6

2/4/19

3

Review: Problem/Solution
• Problem. Find all nodes with paths to s
• Solution. Run BFS on in edges instead of out

edges

Feb 4, 2019 CSCI211 - Sprenkle 5

DAGS AND
TOPOLOGICAL ORDERING

6Feb 4, 2019 CSCI211 - Sprenkle

2/4/19

4

Directed Acyclic Graphs
• Def. A DAG is a directed graph that contains

no directed cycles.
• Example. Precedence constraints:

edge (vi, vj) means vi must precede vj
ØCourse prerequisite graph:

course vi must be taken before vj

ØCompilation: module vi must be compiled before vj

ØPipeline of computing jobs: output of job vi needed
to determine input of job vj

Feb 4, 2019 CSCI211 - Sprenkle 7

v2 v3

v6 v5 v4

v7 v1

a DAG:

Problem: Valid Ordering

• Given a set of tasks with dependencies,

what is a valid order in which the tasks could be

performed?

Feb 4, 2019 CSCI211 - Sprenkle 8

v2 v3

v6 v5 v4

v7 v1

2/4/19

5

Topological Ordering
• Problem: Given a set of tasks with dependencies,

what is a valid order in which the tasks could be
performed?

• Def. A topological order of a directed graph
G = (V, E) is an ordering of its nodes as v1, v2, …, vn
such that for every directed edge (vi, vj), i < j.

Feb 4, 2019 CSCI211 - Sprenkle 9

a DAG
a topological ordering
All edges point “forward”

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

Coordinating labeling of nodes, but numbering is not known for just DAG

Topological Ordering Example
• Given a set of tasks with dependencies,

what is a valid order in which the tasks could be
performed?
Ø Example: Course prerequisites

• Values of the nodes vs. their ids

• A topological order of a directed graph
G = (V, E) is an ordering of its nodes as
v1, v2, …, vn such that for every directed edge
(vi, vj), i < j.

Feb 4, 2019 CSCI211 - Sprenkle 10

2/4/19

6

Towards a Solution

• Start by showing that if G has a topological

order, then G is a DAG

• Eventually, we’ll show the other direction:

if G is a DAG, then G has a topological order

Feb 4, 2019 CSCI211 - Sprenkle 11

Directed Acyclic Graphs
• Lemma. If G has a topological order,

then G is a DAG.
• Proof plan: Try to show that G has a topological

order even though G has a cycle

Feb 4, 2019 CSCI211 - Sprenkle 12

v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

Why isn’t this valid?

2/4/19

7

DAGs & Topological Orderings
• Lemma. If G has a topological order, then G is a DAG.
• Pf. (by contradiction)

Ø Suppose that G has a topological order v1, …, vn and
that G also has a directed cycle C.

Feb 4, 2019 CSCI211 - Sprenkle 13

v1 vi vj vn

the directed cycle C

the supposed topological order: v1, …, vn

What can we say about that cycle
and the nodes, edges in the cycle?

DAGs & Topological Orderings
• Lemma. If G has a topological order, then G is a DAG.
• Pf. (by contradiction)

Ø Suppose that G has a topological order v1, …, vn and
that G also has a directed cycle C.

Ø Let vi be the lowest-indexed node in C, and let vj be the node on C
just before vi; thus (vj, vi) is an edge

Ø By our choice of i (lowest-indexed node), i < j
Ø Since (vj, vi) is an edge and v1, …, vn is a topological order, we must

have j < i
• a contradiction. ▪

Feb 4, 2019 CSCI211 - Sprenkle 14

v1 vi vj vn

the directed cycle C

the supposed topological order: v1, …, vn

2/4/19

8

DAGs and Topological Ordering

• Does every DAG have a topological ordering?

Ø If so, how do we compute one?

Feb 4, 2019 CSCI211 - Sprenkle 15

DAGs and Topological Ordering
• Does every DAG have a topological ordering?

Ø If so, how do we compute one?

• What do we need to be able to create a
topological ordering?
ØWhat are some characteristics of this graph?

Feb 4, 2019 CSCI211 - Sprenkle 16

v1 v2 v3 v4 v5 v6 v7

2/4/19

9

DAGs and Topological Ordering
• Does every DAG have a topological ordering?

Ø If so, how do we compute one?

• What do we need to be able to create a
topological ordering?
ØWhat are some characteristics of this graph?

Feb 4, 2019 CSCI211 - Sprenkle 17

v1 v2 v3 v4 v5 v6 v7

Need a place to start:
a node with no incoming edges

(no dependencies)
Note that both v1 and v2

have no incoming edges

Towards a Topological Ordering
• Does every DAG have a topological ordering?

Feb 4, 2019 CSCI211 - Sprenkle 18

Do we know there is always a
node with no incoming edges?

Goal: Find an algorithm for finding the TO
Idea: 1st node is one with no incoming edges

2/4/19

10

Towards a Topological Ordering

• Lemma. If G is a DAG,

then G has a node with no incoming edges

ØWe need this as our starting point of the topological

ordering

Feb 4, 2019 CSCI211 - Sprenkle 19

How to prove?

Towards a Topological Ordering
• Lemma. If G is a DAG,

then G has a node with no incoming edges

• Proof idea: Consider if there is no node without
incoming edges
ØRestated: All nodes have incoming edges.
ØWhat contradiction are we looking for?

Feb 4, 2019 CSCI211 - Sprenkle 20

2/4/19

11

Towards a Topological Ordering
• Lemma. If G is a DAG,

then G has a node with no incoming edges.
• Pf. (by contradiction)

Ø Suppose that G is a DAG and every node has at least one incoming
edge

Ø Pick any node v, and follow edges backward from v.
• Since v has at least one incoming edge (u, v), we can walk backward to

u
Ø Since u has at least one incoming edge (t, u), we can walk backward

to t
Ø Repeat until we visit a node, say w, twice

• Has to happen at least by step n+1 (Why?)
Ø Let C denote the sequence of nodes encountered between

successive visits to w. C is a cycle, which is a contradiction to G is a
DAG �

Feb 4, 2019 CSCI211 - Sprenkle 21

w t u v

Putting it all together:
Creating a topological order
• Given a DAG, find its topological order

Feb 4, 2019 CSCI211 - Sprenkle 22

Ideas?

2/4/19

12

Topological Ordering Algorithm

Feb 4, 2019 CSCI211 - Sprenkle 23 23

Find a node v with no incoming edges
Order v first
Delete v from G
Recursively compute a topological ordering of G-{v}

and append this order after v

How do we know this works?

Directed Acyclic Graphs
• Lemma. If G is a DAG, then G has a topological

ordering.
• Pf. (by induction on n)

ØBase case:

Feb 4, 2019 CSCI211 - Sprenkle 24

v

2/4/19

13

DAG

Directed Acyclic Graphs
• Lemma. If G is a DAG, then G has a topological

ordering.
• Pf. (by induction on n)

ØBase case: true if n = 1
Ø Induction Hypothesis: a DAG with k nodes > 1 has a

topological ordering
ØGiven a DAG on k+1 nodes, find a node v with no

incoming edges

Feb 4, 2019 CSCI211 - Sprenkle 25

DAG
v

Directed Acyclic Graphs
• Lemma. If G is a DAG, then G has a topological ordering.
• Pf. (by induction on n)

Ø Base case: true if n = 1
Ø Induction Hypothesis: a DAG with k nodes > 1 has a

topological ordering
Ø Given a DAG on k+1 nodes, find a node v with no incoming

edges
Ø G - { v } is a DAG because deleting v

cannot create cycles
Ø Also know, by inductive hypothesis,

G - { v } has a topological ordering
Ø Place v first in topological ordering
Ø Append nodes of G - { v } in topological order.

• valid since v has no incoming edges. �

Feb 4, 2019 CSCI211 - Sprenkle 26

DAG

DAG
v

2/4/19

14

Topological Ordering Algorithm
• Lemma. If G is a DAG,

then G has a topological ordering.
• Algorithm:

Feb 4, 2019 CSCI211 - Sprenkle 27

Find a node v with no incoming edges
Order v first
Delete v from G
Recursively compute a topological ordering of G-{v}

and append this order after v

Topological Ordering Algorithm:
Example

28

v1

Topological order:

v2 v3

v6 v5 v4

v7 v1

Feb 4, 2019 CSCI211 - Sprenkle

2/4/19

15

Topological Ordering Algorithm:
Example

29

v2

Topological order: v1

v2 v3

v6 v5 v4

v7

Feb 4, 2019 CSCI211 - Sprenkle

Topological Ordering Algorithm:
Example

30

v3

Topological order: v1, v2

v3

v6 v5 v4

v7

Feb 4, 2019 CSCI211 - Sprenkle

2/4/19

16

Topological Ordering Algorithm:
Example

31

v4

Topological order: v1, v2, v3

v6 v5 v4

v7

Feb 4, 2019 CSCI211 - Sprenkle

Topological Ordering Algorithm:
Example

32

v5

Topological order: v1, v2, v3, v4

v6 v5

v7

Feb 4, 2019 CSCI211 - Sprenkle

2/4/19

17

Topological Ordering Algorithm:
Example

33

v6

Topological order: v1, v2, v3, v4, v5

v6

v7

Feb 4, 2019 CSCI211 - Sprenkle

Topological Ordering Algorithm:
Example

34

v7

Topological order: v1, v2, v3, v4, v5, v6

v7

Feb 4, 2019 CSCI211 - Sprenkle

2/4/19

18

Topological Ordering Algorithm:
Example

35

Topological order: v1, v2, v3, v4, v5, v6, v7.

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

Feb 4, 2019 CSCI211 - Sprenkle

Topological Order Runtime

• Where are the costs?
• How would we implement?

Feb 4, 2019 CSCI211 - Sprenkle 36

Find a node v with no incoming edges
Order v first
Delete v from G
Recursively compute a topological ordering of G-{v}

and append this order after v

2/4/19

19

Topological Order Runtime

• Find a node without incoming edges and delete
it: O(n)

• Repeat on all nodes
à O(n2)

Feb 4, 2019 CSCI211 - Sprenkle 37

Can we do better?

Find a node v with no incoming edges
Order v first
Delete v from G
Recursively compute a topological ordering of G-{v}

and append this order after v

O(n)

O(n)
O(n)

O(1)

O(1)

Topological Sorting Algorithm:
Running Time

• Theorem. Find a topological order in O(m + n)
time

• Pf.
ØMaintain the following information:

• count[w] = remaining number of incoming edges
• S = set of remaining nodes with no incoming edges

Ø Initialization: O(m + n) via single scan through graph
ØAlgorithm:

• Select a node v from S, remove v from S
• Decrement count[w] for all edges from v to w

Ø Add w to S if count[w] = 0
Feb 4, 2019 CSCI211 - Sprenkle 38

2/4/19

20

Looking Ahead
• Wiki due Tuesday at 11:59 p.m.

Ø Sections 3.2-3.6
• Problem Set 4 due Friday

Feb 4, 2019 CSCI211 - Sprenkle 39

