
2/6/19

1

Objectives
• Directed Graphs

Ø Topological ordering
Ø Strong Connectivity

• Greedy Algorithms
Ø Interval Scheduling

Feb 6, 2019 1CSCI211 - Sprenkle

Review
• What is a topological ordering?

ØWhat does the graph represent?
• What are the constraints on the graph?

ØWhat is the output?
ØHow do we find the topological ordering?

• How would we implement?
• What is its runtime?

Feb 6, 2019 CSCI211 - Sprenkle 2

2/6/19

2

Topological Order Runtime

• Where are the costs?
• How would we implement?

Feb 6, 2019 CSCI211 - Sprenkle 3

Find a node v with no incoming edges
Order v first
Delete v from G
Recursively compute a topological ordering of G-{v}

and append this order after v

Topological Order Runtime

• Find a node without incoming edges and delete
it: O(n)

• Repeat on all nodes
à O(n2)

Feb 6, 2019 CSCI211 - Sprenkle 4

Can we do better?

Find a node v with no incoming edges
Order v first
Delete v from G
Recursively compute a topological ordering of G-{v}

and append this order after v

O(n)

O(n)
O(n)

O(1)

O(1)

2/6/19

3

Topological Sorting Algorithm:
Running Time

• Theorem. Find a topological order in O(m + n)
time

• Pf.
ØMaintain the following information:

• count[w] = remaining number of incoming edges
• S = set of remaining nodes with no incoming edges

Ø Initialization: O(m + n) via single scan through graph
ØAlgorithm:

• Select a node v from S, remove v from S
• Decrement count[w] for all edges from v to w

Ø Add w to S if count[w] = 0
Feb 6, 2019 CSCI211 - Sprenkle 5

STRONG CONNECTIVITY
Directed Graphs

Feb 6, 2019 CSCI211 - Sprenkle 6

2/6/19

4

Strong Connectivity
• Def. Node u and v are mutually reachable if

there is a path from uà v and
also a path from và u

• Def. A graph is strongly connected if every pair
of nodes is mutually reachable

• Lemma. Let s be any node. G is strongly
connected iff every node is reachable from s and
s is reachable from every node
ØWe want to prove this…

Feb 6, 2019 CSCI211 - Sprenkle 7

s

v

u

(not necessarily a direct edge)

Strong Connectivity
• If u and v are mutually reachable

and v and w are mutually reachable,
then u and w are mutually reachable

Feb 6, 2019 CSCI211 - Sprenkle 8

What do we need to show to prove this is true?

2/6/19

5

Strong Connectivity
• If u and v are mutually reachable

and v and w are mutually reachable,
then u and w are mutually reachable.

• Proof. We need to show that there is a path
from u à w and from w à u.
ØBy defn of mutually reachable

• There is a path u à v & a path v à u
• There is a path v à w, and a path w à v

Ø Take path uàv and then from v à w
• Path from uàw

Ø Similarly for wàu
Feb 6, 2019 CSCI211 - Sprenkle 9

Strong Connectivity
• Def. A graph is strongly connected if every pair

of nodes is mutually reachable
• Lemma. Let s be any node in G.

G is strongly connected
iff every node is reachable from s,
and s is reachable from every node.
Ø 1st prove Þ
Ø 2nd prove Ü

• for any nodes u and v, is there a path uàv and vàu ?

Feb 6, 2019 CSCI211 - Sprenkle 10

s

v

u

2/6/19

6

Strong Connectivity
• Def. A graph is strongly connected if every pair

of nodes is mutually reachable
• Lemma. Let s be any node in G.

G is strongly connected iff
every node is reachable from s,
and s is reachable from every node.
ØPf. Þ Follows from definition of strongly connected
ØPf. Ü For any nodes u and v, make path uàv and
vàu
• uàv : concatenating uàs with sàv
• vàu: concatenate vàs with sàu

Feb 6, 2019 CSCI211 - Sprenkle 11

s

v

u

Strong Connectivity Problem
• Claim: We can determine if G is strongly

connected in O(m + n) time

Feb 6, 2019 CSCI211 - Sprenkle 12

strongly connected not strongly connected

Hint: Can we leverage any algorithms
we know have O(m+n) time?

2/6/19

7

Strong Connectivity: Algorithm
• Theorem. Can determine if G is strongly

connected in O(m + n) time.
• Pf.

ØPick any node s
ØRun BFS from s in G
ØRun BFS from s in Grev

ØReturn true iff both BFS executions reach all nodes
ØCorrectness follows immediately from previous

lemma
• All reachable from one node, s is reached by all

Feb 6, 2019 CSCI211 - Sprenkle 13

reverse orientation of every edge in G
Or, the BFS using the in edges

Strong Components
• Strong components: analogous to connected

component in undirected graph
Ø Set of mutually reachable nodes

• For any two nodes s and t in a directed graph,
their strong components are either identical or
disjoint

Feb 6, 2019 CSCI211 - Sprenkle 14

Hint: Consider a node in common…

2/6/19

8

Strong Components
• For any two nodes s and t in a directed graph, their

strong components are either identical or disjoint
• Proof.

Ø Consider v in both strong components
• sà v; v à s; vàt; tàv è

tàs, sàt (mutually reachable)
• As soon as there is one common node, then have identical

strong components
Ø On the other hand, consider s and t are not mutually

reachable
• No node v that is in the strong component of each

Ø What would it mean if there were?

Feb 6, 2019 CSCI211 - Sprenkle 15

GREEDY ALGORITHMS

Feb 6, 2019 CSCI211 - Sprenkle 16

2/6/19

9

Greedy Algorithms

• Need a proof to show that the algorithm finds an
optimal solution

• A counter example shows that a greedy
algorithm does not provide an optimal solution

Feb 6, 2019 CSCI211 - Sprenkle 17

At each step, take as much as you can get
à “local” optimizations

Example of Greedy Algorithm
• How do you make change to give out the fewest

coins?

• Determine for 34¢

Feb 6, 2019 CSCI211 - Sprenkle 18

2/6/19

10

Example of Greedy Algorithm
• How do you make change to give out the fewest

coins?

• Ex: 34¢.

Feb 6, 2019 CSCI211 - Sprenkle 19

while change > 0:
if change >= 25:

print “Quarter”
change -= 25

elif change >= 10:
print “Dime”
change -= 10

… Let’s generalize …

Coin Changing
• Goal. Given currency denominations: 1, 5, 10, 25, 100,

devise a method to pay amount to customer using fewest
number of coins.

• Ex: 34¢.

• Cashier's algorithm. At each iteration, add coin of the
largest value that does not take us past the amount to be
paid.

• Ex: $2.89.

Feb 6, 2019 CSCI211 - Sprenkle 20

2/6/19

11

Greedy Algorithm Template
• Consider candidates (or whatever) in some order

ØDecision: What order is best?
• Take each candidate provided it’s compatible

with the ones already taken

Feb 6, 2019 CSCI211 - Sprenkle 21

What are options for orders?

What is our goal?
What are we trying to minimize/maximize?

What is the worst case?

Greedy Algorithm Pseudo-Code

Feb 6, 2019 CSCI211 - Sprenkle 22

Set Greedy (List candidates){
solution = new Set();
while candidates.isNotEmpty()

next = candidates.select() //use selection criteria,
//remove from candidate and return value
if solution.isFeasible(next) //constraints satisfied

solution.union(next)
if solution.solves()

return solution

//No more candidates and no solution
return null

}

In some specified order

2/6/19

12

Coin-Changing: Greedy Algorithm
• Cashier's algorithm. At each iteration, add coin

of the largest value that does not take us past
the amount to be paid.

Feb 6, 2019 CSCI211 - Sprenkle 23

Sort coins’ denominations by value: c1 < c2 < … < cn.

S = f
while x ¹ 0

let k be largest integer such that ck £ x
if k = 0

return "no solution found"
x = x - ck
S = S È {k}

return S

coins selected

How could this happen?

Is cashier's algorithm optimal?

25

Coin-Changing:
Analysis of Greedy Algorithm
• Observation. Greedy algorithm is sub-optimal for

US postal denominations:
Ø 500 300 200 100 86 85 79 78 66 65 46 44 33 32 20 4 3 2 1

• Counterexample. 158¢.
Ø Greedy: 100, 44, 4, 4, 4, 2.
Ø Optimal: 79, 79.

Feb 6, 2019
CSCI211 - Sprenkle

2/6/19

13

Proving Greedy Algorithms Work
• Specifically, produce an optimal solution

• Approaches:
ØGreedy algorithm stays ahead

• Does better than any other algorithm at each step
Ø Exchange argument

• Transform any solution into a greedy solution
Ø Structural argument

• Figure out some structural bound that all solutions
must meet

Feb 6, 2019 CSCI211 - Sprenkle 26

INTERVAL SCHEDULING
Greedy algorithm stays ahead

Feb 6, 2019 27CSCI211 - Sprenkle

2/6/19

14

Interval Scheduling

• Job j starts at sj and finishes at fj

• Two jobs are compatible if they don't overlap

• Goal: find maximum subset of mutually compatible
jobs

Feb 6, 2019 CSCI211 - Sprenkle 28

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

• Every job is worth equal
money.
• To earn the most money à

schedule the most jobs

Greedy Algorithm Template

• Consider candidates (in this case, jobs) in some

order

• Take each job provided it’s compatible with the

ones already taken

Feb 6, 2019 CSCI211 - Sprenkle 29

What are options for orders?

What is our goal?
What are we trying to optimize?

What is the worst case?
(Helps us with finding counterexamples to optimality.)

Let’s take as an

example the

current order

2/6/19

15

Looking Ahead
• Problem Set 4 due Friday
• Exam given out on Friday

Feb 6, 2019 CSCI211 - Sprenkle 30

