Objectives

- Greedy Algorithms
$>$ Interval scheduling
$>$ Interval partitioning

Review

What is a greedy algorithm?
What is the template for a greedy algorithm?

- What problem were we trying to solve?
- What orders did we come up with?
$>$ What approaches didn't work?
- How did they prove they didn't work?
$>$ Can you "break" any of the other orders?
- Find a counterexample to finding the optimal (not necessarily based on our example)

Review: Greedy Algorithms

- Template

1. Consider candidates in some order

- Decision: What order is best?

2. Take each candidate provided it's compatible with the ones already taken

- At each step, take as much as you can get
$>$ Feasible - satisfy problem's constraints
> Locally optimal - best local choice among available feasible choices
> Irrevocable - after decided, no going back

Review: Interval Scheduling

- Job j starts at s_{j} and finishes at f_{j}
- Two jobs are compatible if they don't overlap
- Goal: find maximum subset of mutually compatible jobs

Interval Scheduling

- Earliest start time. Consider jobs in ascending order of start time s_{j}
> Utilize CPU as soon as possible
- Earliest finish time. Consider jobs in ascending order of finish time f_{j}
$>$ Resource becomes free ASAP
$>$ Maximize time left for other requests
- Shortest interval. Consider jobs in ascending order of interval length $f_{j}-s_{j}$
- Fewest conflicts. For each job, count the number of conflicting jobs c_{j}. Schedule in ascending order of conflicts c_{j}

Counterexamples to Optimality of Various Job Orders

Not optimal when ...

Interval Scheduling: Greedy Algorithm

- Consider jobs in increasing order of finish time
- Take each job provided it's compatible with the ones already taken
jobs Sort jobs by finish times so that $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$ selected
vG = \{\}
for $\mathrm{j}=1$ to n
if job j compatible with G
$G=G \cup\{j\}$
return G

Interval Scheduling

Interval Scheduling

Interval Scheduling

Interval Scheduling

Interval Scheduling

Interval Scheduling

Interval Scheduling

Interval Scheduling

	B		E					G		
0	1	2	3	4	5	6	7	8	9	10

Interval Scheduling

Interval Scheduling: Greedy Algorithm

- Consider jobs in increasing order of finish time
- Take each job provided it's compatible with the ones already taken

```
jobs Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{
selected
    *G = {}
for j = 1 to n
        if job j compatible with G
            G=G\cup{j}
        return G
```

Runtime of algorithm?
- Where/what are the costs?

Interval Scheduling: Greedy Algorithm

- Consider jobs in increasing order of finish time.
- Take each job provided it's compatible with the ones already taken.
jobs Sort jobs by finish times so that $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$ selected
$7 \mathrm{G}=\{ \}$
for $j=1$ to n
if $\underset{G=G}{j o b} \underset{\{j\}}{j}$ compatible with $G O(1)\} O(n)$ return G
- Implementation. O(n log n)
$>$ Remember job j^{*} that was added last to G
\Rightarrow Job jis compatible with G if $\mathrm{s}_{\mathrm{j}} \geq \mathrm{f}_{\mathrm{j}}{ }^{*}$

Analyzing Interval Scheduling

- Correctness: Know that the intervals are compatible

Handled by the if statement

But is it optimal?
What does it mean to be optimal?
$>$ Recall our goal for maximization

Greedy Stays Ahead Proofs

1. Define your solutions
$>$ Describe the form of your greedy solution (A) and of some other solution (possibly the optimal solution, O)
2. Find a measure
$>$ Find a measure by which greedy stays ahead of the optimal solution

- Ex: Let a_{1}, \ldots, a_{k} be the first k measures of greedy algorithm and o_{1}, \ldots, o_{m} be the first m measures of optimal solution (sometimes $m=k$)

3. Prove greedy stays ahead
$>$ Show that greedy's partial solutions constructed are always just as good as the optimal solution's initial segments based on the measure

- Ex: for all indices $r \leq \min (k, m)$, prove by induction that $a_{r} \geq o_{r}$ or $a_{r} \leq o_{r}$
$>$ Use the greedy algorithm to help you argue the inductive step

4. Prove optimality
$>$ Prove that since greedy stays ahead of the other solution with respect to the measure, then the greedy solution is optimal

Interval Scheduling: Optimality Analysis

- Theorem. Greedy algorithm is optimal, i.e., schedules the most jobs possible
- Pf. (by contradiction)
> Assume greedy is not optimal
$>$ Let $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{k}}$ denote set of jobs selected by greedy (k jobs)
$>$ Let $\mathrm{o}_{1}, \mathrm{o}_{2}, \ldots, \mathrm{o}_{\mathrm{m}}$ denote set of jobs in optimal solution (m jobs)
$>$ Both sets ordered by finish time for comparison ordering
\Rightarrow Want to show that $k=m$

Greedy:

OPT: \qquad

Interval Scheduling: Optimality Analysis

- Theorem. Greedy algorithm is optimal, i.e., schedules the most jobs possible
- Pf. (by contradiction)
$>$ Assume greedy is not optimal
$>$ Let $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{k}}$ denote set of jobs selected by greedy (k jobs)
$>$ Let $\mathrm{o}_{1}, \mathrm{o}_{2}, \ldots, \mathrm{o}_{\mathrm{m}}$ denote set of jobs in optimal solution (m jobs)
$>$ Both sets ordered by finish time for comparison ordering
\Rightarrow Want to show that $k=m$

What can we say about a_{1} and o_{1} ? $\mathrm{f}\left(\mathrm{a}_{1}\right) \leq \mathrm{f}\left(\mathrm{o}_{1}\right)$

Interval Scheduling: Optimality Analysis

- Theorem. Greedy algorithm is optimal
> i.e., schedules the most jobs possible
- Pf. (by contradiction)
> Since we picked the first job to have the first finishing time, we know that $\mathrm{f}\left(\mathrm{a}_{1}\right)$ <= $\mathrm{f}\left(\mathrm{o}_{1}\right)$
$>$ Want to show that Greedy "stays ahead"
- Each interval finishes at least as soon as Optimal's
$>$ Induction hypothesis: for all indices $r<=k, f\left(a_{r}\right)<=f\left(o_{r}\right)$
Prove for $\mathrm{r}+1$
greets $\square \square \square-\square$

OPT: \qquad

Feb 8, 2019
CSCI211 - Sprenkle

Interval Scheduling: Analysis

- Theorem. Greedy algorithm is optimal
$>$ i.e., schedules the most jobs possible
- Pf. (by contradiction)
$>$ Since we picked the first job to have the first finishing time, we know that $f\left(\mathrm{a}_{1}\right)<=\mathrm{f}\left(\mathrm{o}_{1}\right)$
> Want to show that Greedy "stays ahead"
- Each interval finishes at least as soon as Optimal's
$>$ Induction hypothesis: for all indices $r<=k, f\left(a_{r}\right)<=f\left(o_{r}\right)$

Interval Scheduling: Analysis

- Theorem. Greedy algorithm is optimal.
$>$ i.e., schedules the most jobs possible
- Pf. (by contradiction)
$>$ Assume Greedy is not optimal (i.e., $m>k$)
- Optimal solution has more jobs than Greedy
$>$ We already showed that for all indices $r \leq k, f\left(a_{r}\right) \leq f\left(o_{r}\right)$
$>$ Since $\mathrm{m}>\mathrm{k}$, there is a request $\mathrm{o}_{\mathrm{k}+1}$ in Optimal

Interval Scheduling: Analysis

- Theorem. Greedy algorithm is optimal.
$>$ i.e., schedules the most jobs possible
- Pf. (by contradiction)
$>$ Assume Greedy is not optimal (i.e., m >k)
$>$ We already showed that for all indices $r \leq k, f\left(a_{r}\right) \leq f\left(o_{r}\right)$
$>$ Since $m>k$, there is a request o_{k+1} in Optimal
- Starts after o_{k} ends \rightarrow after a_{k} ends
$>$ So, Greedy could also add $\mathrm{o}_{\mathrm{k}+1}$
- Contradiction because now Greedy has another job

Problem Assumptions

- All requests were known to scheduling algorithm
> Online algorithms: make decisions without knowledge of future input
- Each job was worth the same amount
$>$ What if jobs had different values?
- E.g., scaled with size
- Single resource requested
$>$ Rejected requests that didn't fit

INTERVAL PARTITIONING

Interval Partitioning

- Lecture j starts at s_{j} and finishes at f_{j}
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.
- Ex: 10 lectures in 4 classrooms

Interval Partitioning

- Lecture j starts at s_{j} and finishes at f_{j}
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.
- Alternative schedule uses only 3 classrooms

Interval Partitioning:

Lower Bound on Optimal Solution

- Def. The depth of a set of open intervals is the maximum number that contain any given time.
- Key observation. \# of classrooms needed \geq depth.
- Ex: Depth of schedule below $=3 \Rightarrow$ schedule below is optimal.

Interval Partitioning Discussion

- Does there always exist a schedule equal to depth of intervals?
- Can we make decisions locally to get a global optimum?
$>$ Or are there long-range obstacles that require more resources?

Interval Partitioning: Greedy Algorithm

- Consider lectures in increasing order of start time: assign lecture to any compatible classroom

```
Sort intervals by starting time so that s}\mp@subsup{\mathbf{s}}{1}{}\leq\mp@subsup{\mathbf{s}}{2}{}\leq\ldots\leq\mp@subsup{\mathbf{s}}{n}{
d=0}\longleftarrow~\mathrm{ number of allocated classrooms
for j = 1 to n
    if lecture j is compatible with some classroom k
        schedule lecture j in classroom k
    else
        allocate a new classroom d + 1
        schedule lecture j in classroom d + 1
        d = d + 1
```

> Analyze algorithm

Interval Partitioning: Greedy Algorithm

- Consider lectures in increasing order of start time: assign lecture to any compatible classroom

```
Sort intervals by starting time so that s}\mp@subsup{\mathbf{s}}{1}{}\leq\mp@subsup{\mathbf{s}}{2}{}\leq\ldots\leq\mp@subsup{\mathbf{s}}{n}{
d = 0 « number of allocated classrooms
for j = 1 to n
    if (lecture j is compatible with some classroom k)
        schedule lecture j in classroom k
    else
        allocate a new classroom d + 1
        schedule lecture j in classroom d + 1
        d = d + 1
```

- Implementation: O(n log n)
> For each classroom k, maintain the finish time of the last job added.
$>$ Keep the classrooms in a priority queue by last job finish time.

```
Exam 1- due next Friday at 5 p.m.
- Open
    > Your brain
    > Your notes, wiki
    > Handouts
    >My posted slides, course web site
    >Sakai forum for our class (posted solutions)
    M Me (more limited than with problem sets)
- Closed - everything else
* Start early! No extensions
```


Next Week

- No class on Wednesday
> Work on exam
- No wiki
- Office Hours
$>\mathrm{M}:$ 2:30-5 p.m.
$>$ W: 9:45-11:30 a.m. (class time), 2:30-5 p.m.
$>$ R: 2:30-5 p.m.
$>$ And by appointment
- Try to rotate - limit of 10 minutes

