Objectives

- Wrap Up: Interval Partitioning
- Minimizing Lateness
> Greedy exchange

Review

- Problem: Interval Scheduling
> Solution?
> How proved algorithm optimal?
- Problem: Interval Partitioning
> Solution?

Review: Greedy Stays Ahead Proofs

1. Define your solutions
$>$ Describe the form of your greedy solution (A) and of some other solution (possibly the optimal solution, $\mathbf{0}$)
2. Find a measure
$>$ Find a measure by which greedy stays ahead of the optimal solution

- Ex: Let a_{1}, \ldots, a_{k} be the first k measures of greedy algorithm and o_{1}, \ldots, o_{m} be the first m measures of other solution (sometimes $m=k$)

3. Prove greedy stays ahead
> Show that greedy's partial solutions constructed are always just as good as the optimal solution's initial segments based on the measure

- Ex: for all indices $r \leq \min (k, m)$, prove by induction that $a_{r} \geq o_{r}$ or $a_{r} \leq o_{r}$
$>$ Use the greedy algorithm to help you argue the inductive step

4. Prove optimality
$>$ Prove that since greedy stays ahead of the other solution with respect to the measure, then the greedy solution is optimal

Review: Interval Partitioning

Lecture j starts at s_{j} and finishes at f_{j}

- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Review:

Interval Partitioning: Greedy Algorithm

- Consider lectures in increasing order of start time:
assign lecture to any compatible classroom

```
Sort intervals by starting time so that s}\mp@subsup{s}{1}{}\leq\mp@subsup{s}{2}{}\leq\ldots\leq\mp@subsup{s}{n}{
d = 0 \longleftarrow number of allocated classrooms
for j = 1 to n
    if (lecture j is compatible with some classroom k)
        schedule lecture j in classroom k
    else
        allocate a new classroom d + 1
        schedule lecture j in classroom d + 1
        d = d + 1
```

- Implementation: O(n log n)
$>$ For each classroom k, maintain the finish time of the last job added
$>$ Keep the classrooms in a priority queue by last job finish time

Interval Partitioning: Greedy Analysis

- Defn. The depth d of a set of open intervals (lectures) is the maximum number that contain any given time.
- Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom
- Theorem. Greedy algorithm is optimal
- Pf Intuition
$>$ When do we add more classrooms?
$>$ When would we add the $d+1$ classroom?

Interval Partitioning: Greedy Analysis

- Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom
- Theorem. Greedy algorithm is optimal
- Pf.
$>$ Let $d=$ number of classrooms that the greedy algorithm allocates
$>$ Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all d-1 other classrooms
$>$ Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than s_{j}
$>$ Thus, we have d lectures overlapping at time $\mathrm{s}_{\mathrm{j}}+\varepsilon$
$>\mathrm{d}$ is the depth of the set of lectures

SCHEDULING TO MINIMIZE MAX LATENESS

Scheduling to Minimizing Max Lateness

- Single resource processes one job at a time
- Job j requires t_{j} units of processing time and is due at time d_{j} (its deadline)
- If j starts at time s_{j}, it finishes at time $\mathrm{f}_{\mathrm{j}}=\mathrm{s}_{\mathrm{j}}+\mathrm{t}_{\mathrm{j}}$
- Lateness: $\ell_{\mathrm{j}}=\max \left\{0, \mathrm{f}_{\mathrm{j}}-\mathrm{d}_{\mathrm{j}}\right\}$
- Goal: schedule all jobs to minimize maximum lateness $L=\max \ell_{\mathrm{j}}$

Greedy Algorithms

- Greedy template.

Consider jobs in some order

What do we want to optimize?
What order?
$>$ Intuition of order?
$>$ Counter examples for order being optimal?

Minimizing Lateness: Greedy Algorithms

- Greedy template. Consider jobs in some order.
$>$ Shortest processing time first. Consider jobs in ascending order of processing time t_{j}.

$>$ Smallest slack. Consider jobs in ascending order of slack $d_{j}-t_{j}$.

Minimizing Lateness: Greedy Algorithm

- Earliest deadline first.

```
Sort \(n\) jobs by deadline so that \(d_{1} \leq d_{2} \leq \ldots \leq d_{n}\)
\(t=0\)
for \(j=1\) to \(n\)
    Assign job \(j\) to interval [ \(\mathrm{t}, \mathrm{t}+\mathrm{t}_{\mathrm{j}}\) ]
    \(\mathrm{S}_{\mathrm{j}}=\mathrm{t}\)
    \(f_{j}=t+t_{j}\)
    \(t=t+t_{j}\)
output intervals [ \(\mathrm{s}_{\mathrm{j}}, \mathrm{f}_{\mathrm{j}}\) ]
```


What can we say about this algorithm/its results?

Minimizing Lateness: No Idle Time

- Observation. There exists an optimal schedule with no idle time

- Observation. The greedy schedule has no idle time

Proving Optimality

- Goal: Prove greedy algorithm produces optimal solution
- Approach: Exchange argument
$>$ Start with an optimal schedule Opt
$>$ Gradually modify Opt, preserving its optimality
$>$ Transform into a schedule identical to greedy's schedule

Minimizing Lateness: Inversions

- Def. An inversion in schedule S is a pair of jobs i and j such that:
$\mathrm{d}_{\mathrm{i}}<\mathrm{d}_{\mathrm{j}}\left({ }^{\prime}\right.$'s deadline is before j) but j scheduled before i

> Can Greedy's solution have any inversions?

Minimizing Lateness: Inversions

- Def. An inversion in schedule S is a pair of jobs i and j such that:
$\mathrm{d}_{\mathrm{i}}<\mathrm{d}_{\mathrm{j}}\left({ }^{\prime}\right.$'s deadline is before j) but j scheduled before i

Greedy's schedule has no inversions!

Minimizing Lateness: Inversions

- Claim. Swapping two adjacent, inverted jobs reduces the number of inversions by one and does not increase the max lateness

How do we know inversions are adjacent?

- Pf Setup. Let ℓ be the lateness before the swap, and let ℓ^{\prime} be it afterwards

By defn of inversion, $\mathrm{d}_{\mathrm{i}}<\mathrm{d}_{\mathrm{j}}$

Minimizing Lateness: Inversions

- Claim. Swapping two adjacent jobs with the same deadline does not increase the max lateness
- Pf. Let ℓ be the lateness before the swap, and let ℓ^{\prime} be it afterwards
$>$ Lateness remains the same for all other jobs:
- $\ell_{k}^{\prime}=\ell_{k}$ for all $\mathrm{k} \neq \mathrm{i}, \mathrm{j}$
$>\ell_{\mathrm{j}} \leq \ell_{\mathrm{i}}$ because $\mathrm{d}_{\mathrm{i}}<\mathrm{d}_{\mathrm{j}}$
$>$ Lateness of i before is $\ell_{\mathrm{i}}=\mathrm{f}_{\mathrm{i}}-\mathrm{d}_{\mathrm{i}}=\mathrm{T}_{\mathrm{i}-1}+\mathrm{t}_{\mathrm{i}}+\mathrm{t}_{\mathrm{j}}-\mathrm{d}_{\mathrm{i}}$
\rightarrow Lateness of j after is $\ell_{j}^{\prime}=f_{j}^{\prime}-d_{j}=T_{i-1}+t_{i}+t_{j}-d_{j}$

Minimizing Lateness: Inversions

- Claim. Swapping two adjacent, inverted jobs reduces the number of inversions by one and does not increase the max lateness.
- Pf. Let ℓ be the lateness before the swap, and let ℓ ' be it afterwards
$>\ell_{\mathrm{k}}^{\prime}=\ell_{\mathrm{k}}$ for all $\mathrm{k} \neq \mathrm{i}, \mathrm{j}$
$>\ell_{i}^{\prime} \leq \ell_{i}$

$>$ If job j is late:

ℓ_{j}^{\prime}	$=f_{j}^{\prime}-d_{j}$		$($ definition $)$
	$=f_{i}-d_{j}$		$\left(j\right.$ finishes at time $\left.f_{i}\right)$
	$\leq f_{i}-d_{i}$		$(i<j)$
	$\leq \ell_{i}$		(definition)

Shows that the maximum lateness of jobs does not increase after swap

Greedy Exchange Proofs

1. Label your algorithm's solution and a general solution.
$>$ Example: let $\mathrm{A}=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{k}\right\}$ be the solution generated by your algorithm, and let $\mathrm{O}=\left\{\mathrm{o}_{1}, \mathrm{o}_{2}, \ldots, \mathrm{o}_{m}\right\}$ be an optimal feasible solution.
2. Compare greedy with other solution.
> Assume that the optimal solution is not the same as your greedy solution (since otherwise, you are done).
> Typically, can isolate a simple example of this difference, such as:
(1) There is an element $e \in O$ that $\notin A$ and an element $f \in A$ that $\notin O$
(2) 2 consecutive elements in O are in a different order than in A $>$ i.e., there is an inversion
3. Exchange.
$>$ Swap the elements in question in O (either (1) swap one element out and another in or (2) swap the order of the elements) and argue that solution is no worse than before.
$>$ Argue that if you continue swapping, you eliminate all differences between O and A in a finite \# of steps without worsening the solution's quality.
$>$ Thus, the greedy solution produced is just as good as any optimal solution, and hence is optimal itself.

Minimizing Lateness:

Analysis of Greedy Algorithm

- Theorem. Greedy schedule S is optimal
- Pf idea. Convert Opt to Greedy
$>$ Does opt schedule have idle time?
$>$ What if opt schedule has no inversions?
$>$ What if opt schedule has inversions?

Minimizing Lateness:

Analysis of Greedy Algorithm

Theorem. Greedy schedule S is optimal

- Pf. Define S^{*} to be an optimal schedule that has the fewest number of inversions, and let's see what happens
> Can assume S^{*} has no idle time
$>$ If S^{*} has no inversions, then $S=S^{*}$
$>$ If S^{*} has an inversion, let i-j be an adjacent inversion
- Swapping i and j does not increase the maximum lateness and strictly decreases the number of inversions
- This contradicts definition of S^{*} •

Looking Ahead

- Exam due Friday
- No wiki this week

