
2/11/19

1

Objectives
• Wrap Up: Interval Partitioning
• Minimizing Lateness

ØGreedy exchange

Feb 11, 2019 1CSCI211 - Sprenkle

Review
• Problem: Interval Scheduling

Ø Solution?
ØHow proved algorithm optimal?

• Problem: Interval Partitioning
Ø Solution?

Feb 11, 2019 CSCI211 - Sprenkle 2

2/11/19

2

Review: Greedy Stays Ahead Proofs
1. Define your solutions

Ø Describe the form of your greedy solution (A) and of some other
solution (possibly the optimal solution, O)

2. Find a measure
Ø Find a measure by which greedy stays ahead of the optimal solution

• Ex: Let a1, . . . , ak be the first k measures of greedy algorithm and o1 , . . . ,
om be the first m measures of other solution (sometimes m = k)

3. Prove greedy stays ahead
Ø Show that greedy’s partial solutions constructed are always just as good

as the optimal solution’s initial segments based on the measure
• Ex: for all indices r ≤ min(k,m), prove by induction that ar ≥ or or ar ≤ or

Ø Use the greedy algorithm to help you argue the inductive step
4. Prove optimality

Ø Prove that since greedy stays ahead of the other solution with respect to
the measure, then the greedy solution is optimal

Feb 11, 2019 CSCI211 - Sprenkle 3à Make sure maps back to measure of optimality

Review: Interval Partitioning
• Lecture j starts at sj and finishes at fj

• Goal: find minimum number of classrooms to
schedule all lectures so that no two occur at the
same time in the same room.

• Ex: 10 lectures in 4 classrooms

Feb 11, 2019 CSCI211 - Sprenkle 4
Time

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

What are our constraints?Can we use fewer rooms?

2/11/19

3

Sort intervals by starting time so that s1 £ s2 £ ... £ sn
d = 0
for j = 1 to n

if (lecture j is compatible with some classroom k)
schedule lecture j in classroom k

else
allocate a new classroom d + 1
schedule lecture j in classroom d + 1
d = d + 1

Review:
Interval Partitioning: Greedy Algorithm
• Consider lectures in increasing order of start time:

assign lecture to any compatible classroom

• Implementation: O(n log n)
Ø For each classroom k, maintain the finish time of the last job

added
Ø Keep the classrooms in a priority queue by last job finish time

Feb 11, 2019 CSCI211 - Sprenkle 5

number of allocated classrooms

Interval Partitioning: Greedy Analysis
• Defn. The depth d of a set of open intervals

(lectures) is the maximum number that contain
any given time.

• Observation. Greedy algorithm never schedules
two incompatible lectures in the same classroom

• Theorem. Greedy algorithm is optimal
• Pf Intuition

ØWhen do we add more classrooms?
ØWhen would we add the d+1 classroom?

Feb 11, 2019 CSCI211 - Sprenkle 6

2/11/19

4

Interval Partitioning: Greedy Analysis
• Observation. Greedy algorithm never schedules

two incompatible lectures in the same classroom
• Theorem. Greedy algorithm is optimal
• Pf.

Ø Let d = number of classrooms that the greedy algorithm
allocates

Ø Classroom d is opened because we needed to schedule a
job, say j, that is incompatible with all d-1 other
classrooms

Ø Since we sorted by start time, all these incompatibilities
are caused by lectures that start no later than sj

Ø Thus, we have d lectures overlapping at time sj + e
Ø d is the depth of the set of lectures

Feb 11, 2019 CSCI211 - Sprenkle 7Structural argument

SCHEDULING TO
MINIMIZE MAX LATENESS

Exchange argument

Feb 11, 2019 CSCI211 - Sprenkle 8

2/11/19

5

Scheduling to Minimizing Max Lateness
• Single resource processes one job at a time
• Job j requires tj units of processing time and is due at time dj

(its deadline)
• If j starts at time sj, it finishes at time fj = sj + tj

• Lateness: !j = max { 0, fj - dj }
• Goal: schedule all jobs to minimize maximum lateness

L = max !j

Feb 11, 2019 CSCI211 - Sprenkle 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

lateness = 6

Note: not a sum total

Input:

One schedule

Greedy Algorithms

• Greedy template.
Consider jobs in some order

• What do we want to optimize?
• What order?

Ø Intuition of order?
ØCounter examples for order being optimal?

Feb 11, 2019 CSCI211 - Sprenkle 10

2/11/19

6

Minimizing Lateness: Greedy Algorithms

• Greedy template. Consider jobs in some order.
Ø Shortest processing time first. Consider jobs in

ascending order of processing time tj.

Ø Smallest slack. Consider jobs in ascending order of
slack dj - tj.

Feb 11, 2019 CSCI211 - Sprenkle 11

Counter example

Counter example

dj

tj

100

1

1

10

10

2

dj

tj

2

1

1

10

10

2

Minimizing Lateness: Greedy Algorithm
• Earliest deadline first.

Feb 11, 2019 CSCI211 - Sprenkle 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

Sort n jobs by deadline so that d1 £ d2 £ … £ dn
t = 0
for j = 1 to n

Assign job j to interval [t, t + tj]
sj = t
fj = t + tj
t = t + tj

output intervals [sj, fj]

What can we say about this algorithm/its results?

2/11/19

7

Minimizing Lateness: No Idle Time
• Observation. There exists an optimal schedule

with no idle time

• Observation. The greedy schedule has no idle
time

Feb 11, 2019 CSCI211 - Sprenkle 13

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

Proving Optimality
• Goal: Prove greedy algorithm produces optimal

solution
• Approach: Exchange argument

Ø Start with an optimal schedule Opt
ØGradually modify Opt, preserving its optimality
Ø Transform into a schedule identical to greedy’s

schedule

Feb 11, 2019 14CSCI211 - Sprenkle

2/11/19

8

Minimizing Lateness: Inversions
• Def. An inversion in schedule S is a pair of

jobs i and j such that:
di < dj (i’s deadline is before j)
but j scheduled before i

Feb 11, 2019 CSCI211 - Sprenkle 15

ijbefore swap

inversion

Can Greedy’s solution have any inversions?

Minimizing Lateness: Inversions
• Def. An inversion in schedule S is a pair of

jobs i and j such that:
di < dj (i’s deadline is before j)
but j scheduled before i

Feb 11, 2019 CSCI211 - Sprenkle 16

ijbefore swap

inversion

Greedy’s schedule has no inversions!

2/11/19

9

Minimizing Lateness: Inversions
• Claim. Swapping two adjacent, inverted jobs

reduces the number of inversions by one and
does not increase the max lateness

• Pf Setup. Let ! be the lateness before the swap,
and let !’ be it afterwards

Feb 11, 2019 CSCI211 - Sprenkle 17

ij

i j

before swap

after swap
f'j

fi
inversion

By defn of inversion, di < dj

How do we know inversions are adjacent?

What can we say about how
i’s, j’s, and other jobs’ lateness changes?

Minimizing Lateness: Inversions

• Claim. Swapping two adjacent jobs with the same
deadline does not increase the max lateness

• Pf. Let ! be the lateness before the swap,
and let !’ be it afterwards
Ø Lateness remains the same for all other jobs:

• !'k = !k for all k ¹ i, j

Ø !j £ !i because di < dj

Ø Lateness of i before is !i = fi - di = Ti-1 + ti + tj - di

Ø Lateness of j after is !'j =fj
’ - dj = Ti-1 + ti + tj - dj

• But di < dj

Feb 11, 2019 CSCI211 - Sprenkle 18

ij

i j

before swap

after swap

f'j

fi
Put in terms of !i

2/11/19

10

Minimizing Lateness: Inversions
• Claim. Swapping two adjacent, inverted jobs

reduces the number of inversions by one and
does not increase the max lateness.

• Pf. Let ! be the lateness before the swap, and let
!' be it afterwards
Ø !'k = !k for all k ¹ i, j
Ø !'i £ !i

Ø If job j is late:

Feb 11, 2019 CSCI211 - Sprenkle 19

€

" j = " f j − d j (definition)
= fi − d j (j finishes at time f i)
≤ fi − di (i < j)
≤ i (definition)

Shows that the maximum lateness of jobs does not increase after swap

ij

i j

before

after

f'j

fi
inversion

di < dj

Greedy Exchange Proofs
1. Label your algorithm’s solution and a general solution.

Ø Example: let A = {a1, a2, ..., ak} be the solution generated by your algorithm,
and let O = {o1, o2, ..., om} be an optimal feasible solution.

2. Compare greedy with other solution.
Ø Assume that the optimal solution is not the same as your greedy solution

(since otherwise, you are done).
Ø Typically, can isolate a simple example of this difference, such as:
� There is an element e ∈O that ∉ A and an element f ∈ A that ∉O
� 2 consecutive elements in O are in a different order than in A

Ø i.e., there is an inversion
3. Exchange.

Ø Swap the elements in question in O (either � swap one element out and
another in or � swap the order of the elements) and argue that solution is no
worse than before.

Ø Argue that if you continue swapping, you eliminate all differences between O
and A in a finite # of steps without worsening the solution’s quality.

Ø Thus, the greedy solution produced is just as good as any optimal solution,
and hence is optimal itself.

Feb 11, 2019 CSCI211 - Sprenkle 20

2/11/19

11

Minimizing Lateness:

Analysis of Greedy Algorithm

• Theorem. Greedy schedule S is optimal

• Pf idea. Convert Opt to Greedy

ØDoes opt schedule have idle time?

ØWhat if opt schedule has no inversions?

ØWhat if opt schedule has inversions?

Feb 11, 2019 CSCI211 - Sprenkle 21

Minimizing Lateness:
Analysis of Greedy Algorithm
• Theorem. Greedy schedule S is optimal

• Pf. Define S* to be an optimal schedule that has
the fewest number of inversions, and let's see
what happens
ØCan assume S* has no idle time
Ø If S* has no inversions, then S = S*

Ø If S* has an inversion, let i-j be an adjacent inversion
• Swapping i and j does not increase the maximum

lateness and strictly decreases the number of
inversions

• This contradicts definition of S* ▪
Feb 11, 2019 CSCI211 - Sprenkle 22

2/11/19

12

Looking Ahead
• Exam due Friday
• No wiki this week

Feb 11, 2019 CSCI211 - Sprenkle 23

