
2/11/19

1

Objectives
• Wrap Up: Interval Partitioning
• Minimizing Lateness

ØGreedy exchange
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Review
• Problem: Interval Scheduling

Ø Solution?
ØHow proved algorithm optimal?

• Problem: Interval Partitioning
Ø Solution?
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Review: Greedy Stays Ahead Proofs
1. Define your solutions

Ø Describe the form of your greedy solution (A) and of some other 
solution (possibly the optimal solution, O)

2. Find a measure
Ø Find a measure by which greedy stays ahead of the optimal solution

• Ex: Let a1, . . . , ak be the first k measures of greedy algorithm and o1 , . . . , 
om be the first m measures of other solution (sometimes m = k )

3. Prove greedy stays ahead
Ø Show that greedy’s partial solutions constructed are always just as good 

as the optimal solution’s initial segments based on the measure 
• Ex: for all indices r ≤ min(k,m), prove by induction that ar ≥ or or ar ≤ or

Ø Use the greedy algorithm to help you argue the inductive step
4. Prove optimality

Ø Prove that since greedy stays ahead of the other solution with respect to 
the measure, then the greedy solution is optimal
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Review: Interval Partitioning
• Lecture j starts at sj and finishes at fj

• Goal: find minimum number of classrooms to 
schedule all lectures so that no two occur at the 
same time in the same room.

• Ex: 10 lectures in 4 classrooms
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What are our constraints?Can we use fewer rooms?
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Sort intervals by starting time so that s1 £ s2 £ ... £ sn
d = 0
for j = 1 to n

if (lecture j is compatible with some classroom k)
schedule lecture j in classroom k

else
allocate a new classroom d + 1
schedule lecture j in classroom d + 1
d = d + 1

Review: 
Interval Partitioning: Greedy Algorithm
• Consider lectures in increasing order of start time: 

assign lecture to any compatible classroom

• Implementation: O(n log n)
Ø For each classroom k, maintain the finish time of the last job 

added
Ø Keep the classrooms in a priority queue by last job finish time
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number of allocated classrooms

Interval Partitioning: Greedy Analysis
• Defn. The depth d of a set of open intervals 

(lectures) is the maximum number that contain 
any given time.

• Observation. Greedy algorithm never schedules 
two incompatible lectures in the same classroom

• Theorem. Greedy algorithm is optimal
• Pf Intuition

ØWhen do we add more classrooms?
ØWhen would we add the d+1 classroom?
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Interval Partitioning: Greedy Analysis
• Observation. Greedy algorithm never schedules 

two incompatible lectures in the same classroom
• Theorem. Greedy algorithm is optimal
• Pf.

Ø Let d = number of classrooms that the greedy algorithm 
allocates

Ø Classroom d is opened because we needed to schedule a 
job, say j, that is incompatible with all d-1 other 
classrooms

Ø Since we sorted by start time, all these incompatibilities 
are caused by lectures that start no later than sj

Ø Thus, we have d lectures overlapping at time sj + e
Ø d is the depth of the set of lectures
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SCHEDULING TO 
MINIMIZE MAX LATENESS

Exchange argument
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Scheduling to Minimizing Max Lateness
• Single resource processes one job at a time
• Job j requires tj units of processing time and is due at time dj

(its deadline)
• If j starts at time sj, it finishes at time fj = sj + tj

• Lateness:  !j = max { 0,  fj - dj }
• Goal: schedule all jobs to minimize maximum lateness 

L = max !j
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Input:

One schedule

Greedy Algorithms

• Greedy template. 
Consider jobs in some order

• What do we want to optimize?
• What order?

Ø Intuition of order?
ØCounter examples for order being optimal? 
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Minimizing Lateness: Greedy Algorithms

• Greedy template. Consider jobs in some order. 
Ø Shortest processing time first. Consider jobs in 

ascending order of processing time tj.

Ø Smallest slack.  Consider jobs in ascending order of 
slack dj - tj.
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Minimizing Lateness: Greedy Algorithm
• Earliest deadline first.
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Sort n jobs by deadline so that d1 £ d2 £ … £ dn
t = 0
for j = 1 to n

Assign job j to interval [t, t + tj]
sj = t
fj = t + tj
t = t + tj

output intervals [sj, fj]

What can we say about this algorithm/its results?
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Minimizing Lateness: No Idle Time
• Observation.  There exists an optimal schedule 

with no idle time

• Observation. The greedy schedule has no idle 
time
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Proving Optimality
• Goal: Prove greedy algorithm produces optimal 

solution
• Approach: Exchange argument

Ø Start with an optimal schedule Opt
ØGradually modify Opt, preserving its optimality
Ø Transform into a schedule identical to greedy’s

schedule
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Minimizing Lateness: Inversions
• Def. An inversion in schedule S is a pair of 

jobs i and j such that:
di < dj (i’s deadline is before j)
but j scheduled before i
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ijbefore swap

inversion

Can Greedy’s solution have any inversions?

Minimizing Lateness: Inversions
• Def. An inversion in schedule S is a pair of 

jobs i and j such that:
di < dj (i’s deadline is before j)
but j scheduled before i
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ijbefore swap

inversion

Greedy’s schedule has no inversions! 
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Minimizing Lateness: Inversions
• Claim.  Swapping two adjacent, inverted jobs 

reduces the number of inversions by one and 
does not increase the max lateness

• Pf Setup.  Let ! be the lateness before the swap, 
and let !’ be it afterwards
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By defn of inversion, di < dj

How do we know inversions are adjacent?

What can we say about how 
i’s, j’s, and other jobs’ lateness changes?

Minimizing Lateness: Inversions

• Claim.  Swapping two adjacent jobs with the same 
deadline does not increase the max lateness

• Pf.  Let ! be the lateness before the swap, 
and let !’ be it afterwards
Ø Lateness remains the same for all other jobs: 

• !'k = !k for all k ¹ i, j

Ø !j £ !i because di < dj

Ø Lateness of i before is !i = fi - di = Ti-1 + ti + tj - di

Ø Lateness of j after is !'j =fj
’ - dj = Ti-1 + ti + tj - dj

• But di < dj
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Minimizing Lateness: Inversions
• Claim.  Swapping two adjacent, inverted jobs 

reduces the number of inversions by one and 
does not increase the max lateness.

• Pf.  Let ! be the lateness before the swap, and let 
!' be it afterwards
Ø !'k = !k for all k ¹ i, j
Ø !'i £ !i

Ø If job j is late:
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"  j = " f j − d j (definition)
= fi − d j ( j finishes at time f i)
≤ fi − di (i < j)
≤  i (definition)

Shows that the maximum lateness of jobs does not increase after swap
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di < dj

Greedy Exchange Proofs
1. Label your algorithm’s solution and a general solution.

Ø Example: let A = {a1, a2, ..., ak} be the solution generated by your algorithm, 
and let O = {o1, o2, ..., om} be an optimal feasible solution.

2. Compare greedy with other solution. 
Ø Assume that the optimal solution is not the same as your greedy solution 

(since otherwise, you are done).
Ø Typically, can isolate a simple example of this difference, such as:
� There is an element e ∈O that ∉ A and an element f ∈ A that ∉O
� 2 consecutive elements in O are in a different order than in A 

Ø i.e., there is an inversion
3. Exchange. 

Ø Swap the elements in question in O (either � swap one element out and 
another in or � swap the order of the elements) and argue that solution is no 
worse than before. 

Ø Argue that if you continue swapping, you eliminate all differences between O 
and A in a finite # of steps without worsening the solution’s quality.

Ø Thus, the greedy solution produced is just as good as any optimal solution, 
and hence is optimal itself.
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Minimizing Lateness:

Analysis of Greedy Algorithm

• Theorem.  Greedy schedule S is optimal

• Pf idea. Convert Opt to Greedy

ØDoes opt schedule have idle time?

ØWhat if opt schedule has no inversions?

ØWhat if opt schedule has inversions?
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Minimizing Lateness:
Analysis of Greedy Algorithm
• Theorem.  Greedy schedule S is optimal

• Pf.  Define S* to be an optimal schedule that has 
the fewest number of inversions, and let's see 
what happens
ØCan assume S* has no idle time
Ø If S* has no inversions, then S = S*

Ø If S* has an inversion, let i-j be an adjacent inversion
• Swapping i and j does not increase the maximum 

lateness and strictly decreases the number of 
inversions

• This contradicts definition of S*  ▪
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Looking Ahead
• Exam due Friday
• No wiki this week
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