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Objectives
• Weighted, directed graph shortest path
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Review
• What are the three ways to prove the optimality 

of a greedy algorithm?
• Problem: minimizing maximum lateness

ØWhat was the problem?
ØWhat was our approach to solving it?
ØHow did we prove the approach’s optimality?
ØWhat is the algorithm’s runtime?
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Review: Greedy Analysis Strategies
• Greedy algorithm stays ahead.  

Show that after each step of the greedy 
algorithm, its solution is at least as good as any 
other algorithm's. 

• Exchange argument.  Gradually transform any 
solution to the one found by the greedy 
algorithm without hurting its quality.

• Structural.  Discover a simple "structural" bound 
asserting that every possible solution must have 
a certain value. Then show that your algorithm 
always achieves this bound.
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Analyzing Running Time
• Earliest deadline first.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

Sort n jobs by deadline so that d1 £ d2 £ … £ dn
t = 0
for j = 1 to n

Assign job j to interval [t, t + tj]
sj = t
fj = t + tj
t = t + tj

output intervals [sj, fj]

What can we say about this algorithm/its results?What is the runtime of this algorithm?

O(n logn)
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Minimizing Lateness:
Analysis of Greedy Algorithm
• Theorem.  Greedy schedule S is optimal

• Pf.  Define S* to be an optimal schedule that has 
the fewest number of inversions, and let’s see 
what happens
ØCan assume S* has no idle time
Ø If S* has no inversions, then S = S*

Ø If S* has an inversion, let i-j be an adjacent inversion
• Swapping i and j does not increase the maximum 

lateness and strictly decreases the number of 
inversions (as we proved separately)

• This contradicts definition of S*  ▪
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Greedy Exchange Proofs
1. Label your algorithm’s solution and a general solution.

Ø Example: let A = {a1, a2, ..., ak} be the solution generated by your algorithm, 
and let O = {o1, o2, ..., om} be an optimal feasible solution.

2. Compare greedy with other solution. 
Ø Assume that the optimal solution is not the same as your greedy solution 

(since otherwise, you are done).
Ø Typically, can isolate a simple example of this difference, such as:
� There is an element e ∈O that ∉ A and an element f ∈ A that ∉O
� 2 consecutive elements in O are in a different order than in A 

Ø i.e., there is an inversion
3. Exchange. 

Ø Swap the elements in question in O (either � swap one element out and 
another in or � swap the order of the elements) and argue that solution is no 
worse than before. 

Ø Argue that if you continue swapping, you eliminate all differences between O 
and A in a finite # of steps without worsening the solution’s quality.

Ø Thus, the greedy solution produced is just as good as any optimal solution, 
and hence is optimal itself.
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SHORTEST PATH
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Shortest Path Problem
• Given

ØDirected graph G = (V, E)
Ø Source s, destination t
Ø Length !e = length of edge e (non-negative)

• Shortest path problem: find shortest directed 
path from s to t
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Cost of path s-A-B-E-t
=  9 + 23 + 2 + 16
= 48
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cost of path = 
sum of edge costs in pathwww.wlu.edu
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Shortest Path Problem
• Shortest path problem: find shortest directed 

path from s to t
• Brainstorming on solution …
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Dijkstra’s Algorithm

1. Maintain a set of explored nodes S
ØKeep the shortest path distance d(u) from s to u

2. Initialize S={s}, d(s)=0, ∀u≠s, d(u)=∞

3. Repeatedly choose unexplored node v which 
minimizes
Ø Add v to S and set d(v) = p(v)

,)(min)(
:),( eSuvue

udv +=
∈=

π

s

v

u
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S

!e

shortest path to some u 
in explored part

followed by a single edge (u, v)

Feb 15, 2019 10CSCI211 - Sprenkle



2/15/19

6

Dijkstra’s Algorithm
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How is algorithm Greedy?

shortest path to some u 
in explored part

followed by a single edge (u, v)
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How is Algorithm Greedy?
• We always form shortest new s->v path from a 

path in S followed by a single edge

• Proof of optimality: Stays ahead of all other 
solutions
Ø Each time selects a path to a node v, that path is 

shorter than every other possible path to v
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More on this later…

Dijkstra’s Algorithm

1. Maintain a set of explored nodes S
ØKeep the shortest path distance d(u) from s to u

2. Initialize S={s}, d(s)=0, ∀u≠s, d(u)=∞

3. Repeatedly choose unexplored node v which 
minimizes
Ø Add v to S and set d(v) = p(v)
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Implementation Ideas
• What to represent?
• How to represent?

shortest path to (some u 
in explored part

followed by a single edge (u, v))
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Dijkstra’s Shortest Path Algorithm
• Find shortest path from s to t
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Dijkstra’s Shortest Path Algorithm
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S = {  }

PQ = { s, A, B, C, D, E, F, t }
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Dijkstra’s Shortest Path Algorithm
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Dijkstra’s Shortest Path Algorithm
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Dijkstra’s Shortest Path Algorithm
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Dijkstra’s Shortest Path Algorithm
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Dijkstra’s Shortest Path Algorithm

Feb 15, 2019 CSCI211 - Sprenkle 21

s

B

t

A

C

F

D

E

24

18

2

5

30

20

44

16

11

6

19

6

S = { s, A }

PQ = {C, F, B, D, E, t }

¥

¥

¥

¥

¥

¥

0

distance label

Explored Set

9

15

14

9

14

15

X

X

Add node A to explored set
Delete 
min

Dijkstra’s Shortest Path Algorithm

Feb 15, 2019 CSCI211 - Sprenkle 22

s

B

t

A

C

F

D

E

18

2

5

30

20

44

16

11

6

19

6

S = { s, A }

PQ = {C, F, B, D, E, t }

¥

¥

¥
¥

0

Explored Set

9

15

14

9

14

15

Update distances to nodes 
that A points to, if smaller

¥

Decrease 
key

¥X 33

24



2/15/19

12

Looking Ahead

• Wiki due Monday, after break

Ø “Front matter” of Chapter 4

Ø 4.1, 4.2, 4.4

• Problem Set 5 due Friday, after break
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