Objectives

- Weighted, directed graph shortest path

Review

- What are the three ways to prove the optimality of a greedy algorithm?
- Problem: minimizing maximum lateness
$>$ What was the problem?
$>$ What was our approach to solving it?
> How did we prove the approach's optimality?
$>$ What is the algorithm's runtime?

Review: Greedy Analysis Strategies

- Greedy algorithm stays ahead.

Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's.

- Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.
- Structural. Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.

Analyzing Running Time

- Earliest deadline first.

```
Sort n jobs by deadline so that \(\mathrm{d}_{1} \leq \mathrm{d}_{2} \leq \ldots \leq \mathrm{d}_{\mathrm{n}}\)
\(\mathrm{t}=0\)
for \(\mathrm{j}=1\) to n
    Assign job j to interval \(\left[\mathrm{t}, \mathrm{t}+\mathrm{t}_{\mathrm{j}}\right.\) ]
        \(\mathrm{s}_{\mathrm{j}}=\mathrm{t}\)
        \(f_{j}=t+t_{j}\)
output intervals \(\left[s_{j}, f_{j}\right]\)
```


What is the runtime of this algorithm?

Minimizing Lateness:
 Analysis of Greedy Algorithm

Theorem. Greedy schedule S is optimal

- Pf. Define S^{*} to be an optimal schedule that has the fewest number of inversions, and let's see what happens
> Can assume S* has no idle time
> If S^{*} has no inversions, then $S=S^{*}$
$>$ If S^{*} has an inversion, let i-j be an adjacent inversion
- Swapping i and j does not increase the maximum lateness and strictly decreases the number of inversions (as we proved separately)
- This contradicts definition of S^{*} •

Greedy Exchange Proofs

1. Label your algorithm's solution and a general solution.
$>$ Example: let $\mathrm{A}=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{k}\right\}$ be the solution generated by your algorithm, and let $\mathrm{O}=\left\{\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots, \mathrm{O}_{\mathrm{m}}\right\}$ be an optimal feasible solution.
2. Compare greedy with other solution.
$>$ Assume that the optimal solution is not the same as your greedy solution (since otherwise, you are done).
> Typically, can isolate a simple example of this difference, such as:
(1) There is an element $e \in O$ that $\notin A$ and an element $f \in A$ that $\notin O$
(2) 2 consecutive elements in O are in a different order than in A > i.e., there is an inversion
3. Exchange.
$>$ Swap the elements in question in O (either (1) swap one element out and another in or (2) swap the order of the elements) and argue that solution is no worse than before.
$>$ Argue that if you continue swapping, you eliminate all differences between O and A in a finite \# of steps without worsening the solution's quality.
$>$ Thus, the greedy solution produced is just as good as any optimal solution, and hence is optimal itself.

SHORTEST PATH

Shortest Path Problem

- Given
$>$ Directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
$>$ Source s , destination t
$>$ Length $\ell_{\mathrm{e}}=$ length of edge e (non-negative)
- Shortest path problem: find shortest directed path from s to t

Shortest Path Problem

- Shortest path problem: find shortest directed path from s to t
- Brainstorming on solution ...
www.wlu.edu

Dijkstra's Algorithm

1. Maintain a set of explored nodes S
$>$ Keep the shortest path distance $d(u)$ from s to u
2. Initialize $S=\{s\}, d(s)=0, \forall u \neq s, d(u)=\infty$
3. Repeatedly choose unexplored node v which minimizes

$$
\pi(v)=\min _{e=(u, v): u \in S} d(u)+\ell_{e},
$$

Add v to S and set $d(v)=\pi(v)$

Dijkstra's Algorithm

Before

After: Added node v

Dijkstra's Algorithm

1. Maintain a set of explored nodes S
$>$ Keep the shortest path distance $\mathrm{d}(\mathrm{u})$ from s to u
2. Initialize $S=\{s\}, d(s)=0, \forall u \neq s, d(u)=\infty$
3. Repeatedly choose unexplored node v which minimizes

$$
\pi(v)=\min _{e=(u, v): u \in S} d(u)+\ell_{e},
$$

Add v to S and set $d(v)=\pi(v)$
shortest path to some u in explored part
followed by a single edge (u, v)

How is Algorithm Greedy?

We always form shortest new s->v path from a path in S followed by a single edge

- Proof of optimality: Stays ahead of all other solutions
$>$ Each time selects a path to a node v, that path is shorter than every other possible path to v

More on this later...

Dijkstra's Algorithm

1. Maintain a set of explored nodes S
$>$ Keep the shortest path distance $d(u)$ from s to u
2. Initialize $S=\{s\}, d(s)=0, \forall u \neq s, d(u)=\infty$
3. Repeatedly choose unexplored node v which minimizes $\quad \pi(v)=\min _{e=(u, v): u \in S} d(u)+\ell_{e}$,
$>$ Add v to S and set $d(v)=\pi(v)$

followed by a single edge ($u, v)$)
Implementation Ideas
-What to represent?

- How to represent?

Dijkstra's Shortest Path Algorithm

Find shortest path from s to t

Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{ \} \\
& P Q=\{s, A, B, C, D, E, F, t\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

```
S = { }
PQ = {s,A,B,C,D,E,F,t }
```


Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s\} \\
& P Q=\{A, B, C, D, E, F, t\}
\end{aligned}
$$

Dijkstra's Shortest Path Algorithm

Dijkstra's Shortest Path Algorithm

```
S = { s }
PQ = {A,C,F,B,D, E,t }
```

Select node with minimum length from explored set

Dijkstra's Shortest Path Algorithm

Dijkstra's Shortest Path Algorithm

Looking Ahead

- Wiki due Monday, after break
$>$ "Front matter" of Chapter 4
> 4.1, 4.2, 4.4
- Problem Set 5 due Friday, after break

