## Objectives

- Wrap up: Weighted, directed graph shortest path
- Minimum Spanning Tree


## Review

What are greedy algorithms?

- What is our template for solving them?
- Review the last problem we were working on: Single-source, weighted-graph shortest path
$>$ What was our approach to solving the problem?


## Review: Shortest Path Problem

- Given

What was our strategy?
$>$ Directed graph $G=(V, E)$
$>$ Source s , destination t
$>$ Length $\ell_{\mathrm{e}}=$ length of edge e (non-negative)
Shortest path problem: find shortest directed path from s to $t$


## Review: Dijkstra's Algorithm

1. Maintain a set of explored nodes $S$
$>$ Keep the shortest path distance $\mathrm{d}(\mathrm{u})$ from $s$ to $u$
2. Initialize $S=\{s\}, d(s)=0, \forall u \neq s, d(u)=\infty$
3. Repeatedly choose unexplored node $v$ which minimizes $\quad \pi(v)=\min _{e=(u, v): u \in S} d(u)+\ell_{e}$,
$>$ Add $v$ to $S$ and set $d(v)=\pi(v)$


Implementation Ideas
-What to represent?

- How to represent?


## Dijkstra's Shortest Path Algorithm

Find shortest path from s to $t$


## Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{ \} \\
& P Q=\{s, A, B, C, D, E, F, t\}
\end{aligned}
$$



## Dijkstra's Shortest Path Algorithm

```
S = { }
PQ = {s,A,B,C,D,E,F,t }
```



## Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s\} \\
& P Q=\{A, B, C, D, E, F, t\}
\end{aligned}
$$



## Dijkstra's Shortest Path Algorithm



## Dijkstra's Shortest Path Algorithm

```
S = { s }
PQ = {A,C,F,B,D, E,t }
```

Select node with minimum length from explored set


## Dijkstra's Shortest Path Algorithm



## Dijkstra's Shortest Path Algorithm



## Dijkstra's Shortest Path Algorithm



## Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, A, C\} \\
& P Q=\{F, B, D, E, t\}
\end{aligned}
$$



## Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, A, C\} \\
& P Q=\{F, B, E, D, t\}
\end{aligned}
$$

Update distances to nodes $C$ points to,


## Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, A, C\} \\
& P Q=\{F, B, E, D, t\}
\end{aligned}
$$



## Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, A, C, F\} \\
& P Q=\{B, E, t, D\}
\end{aligned}
$$

Add F to S ,


## Dijkstra's Shortest Path Algorithm



## Dijkstra's Shortest Path Algorithm



## Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, A, C, F, B\} \\
& P Q=\{E, t, D\}
\end{aligned}
$$



## Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, A, C, F, B, E\} \\
& P Q=\{\mathbf{D}, \mathrm{t}\}
\end{aligned}
$$

Add E to S,


## Dijkstra's Shortest Path Algorithm

```
S = { s,A,C, F, B, E }
PQ = {D, t }
```



## Dijkstra's Shortest Path Algorithm



## Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, A, C, F, B, E, D\} \\
& P Q=\{t\}
\end{aligned}
$$



## Dijkstra's Shortest Path Algorithm

$$
\begin{aligned}
& S=\{s, A, C, F, B, E, D, t\} \\
& P Q=\{ \}
\end{aligned}
$$

Add t to S ,
Update distances to nodes


## Dijkstra's Shortest Path Algorithm

```
S={s,A,C,F,B,E,D,t }
PQ = { }
```



## Dijkstra's Algorithm: Proof of Correctness

- Invariant. For each node $u \in S, d(u)$ is the length of the shortest s-u path
- Pf. (by induction on $|S|$ )
- Base case: $|S|=1$...
- Inductive hypothesis?
- Next step?


## Dijkstra's Algorithm: Proof of Correctness

- Prove: For each node $u \in S, d(u)$ is the length of the shortest s-u path
- Pf. (by induction on |S|)
- Base case: For $|S|=1, S=\{s\} ; d(s)=0 \checkmark$
- Inductive hypothesis:

Assume true for $|S|=k, k \geq 1$

- Proof:
$>$ Grow |S| to k+1
$>$ Greedy: Add node $v$ by $u \rightarrow v$
$>$ What do we know about $s \rightarrow u$ ?

$>$ Why didn't Greedy pick $y$ as the next node?
$>$ What can we say about all other $s \rightarrow v$ paths?


## Dijkstra's Algorithm: Proof of Correctness

- Prove: For each node $u \in S, d(u)$ is the length of the shortest $s-u$ path
- Pf. (by induction on $|S|$ )
- Inductive hypothesis: Assume true for $|S|=k, k \geq 1$
- Proof:
$>$ Let $v$ be the next node added to $S$ by Greedy, and let $u \rightarrow v$ be the chosen edge
$\Rightarrow$ The shortest $s \rightarrow u$ path plus $u \rightarrow v$ is an $s \rightarrow v$ path of length $\pi(v)$
$>$ Consider any $s \rightarrow v$ path P . It's no shorter than $\pi(\mathrm{v})$.
$>$ Let $x \rightarrow y$ be the first edge in $P$ that leaves $S$, and let $P^{\prime}$ be the subpath to $x$.
$>P$ is already too long as soon as it leaves $S$.

In terms of inequalities:
 weights


CSCI211 - Sprenkle

## Discussion: Dijstra's Algorithm

Why does the algorithm break down if we allow negative weights/costs on edges?


## Dijkstra’s Algorithm: Analysis

1. Maintain a set of explored nodes $S$
$>$ Know the shortest path distance $\mathrm{d}(\mathrm{u})$ from $s$ to $u$
2. Initialize $S=\{s\}, d(s)=0, \forall u \neq s, d(u)=\infty$
3. Repeatedly choose unexplored node $v$ which minimizes

$$
\pi(v)=\min _{e=(u, v): u \in S} d(u)+\ell_{e},
$$

$>$ Add v to S and set $\mathrm{d}(\mathrm{v})=\pi(\mathrm{v})$

shortest path to some $u$ in explored part, followed by a single edge (u,v)

Running time? Implementation? Data structures?

## Dijkstra's Algorithm: Analysis

1. Maintain a set of explored nodes S
$\Rightarrow$ Keep the shortest path distance $\mathrm{d}(\mathrm{u})$ from $s$ to $u$
2. Initialize $S=\{s\}, d(s)=0, \forall u \neq s, d(u)=\infty$
3. Repeatedly choose unexplored node $v$ which minimizes

$$
\pi(v)=\min _{e=(u, v) ; u \in S} d(u)+\ell_{e},
$$

$>$ Add $v$ to $S$ and set $d(v)=\pi(v)$
shortest path to some $u$ in explored part, followed by a single edge ( $u, v$ )

## PQ Operation <br> RT of Op <br> \# in Dijkstra

Insert
ExtractMin
ChangeKey
IsEmpty
Total
How long does each operation take?

- How many of each operation?
f


## Dijkstra's Algorithm: Implementation

- For each unexplored node, explicitly maintain

$$
\pi(v)=\min _{e=(u, v): u \in S} d(u)+\ell_{e} .
$$

$>$ Next node to explore $=$ node with minimum $\pi(v)$.
$>$ When exploring v , for each incident edge $\mathrm{e}=(\mathrm{v}, \mathrm{w})$, update $\quad \pi(w)=\min \left\{\pi(w), \pi(v)+\ell_{e}\right\}$.

- Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by $\pi(v)$

| PQ Operation | RT of Op | \# in Dijkstra |
| :--- | :---: | :---: |
| Insert | $\log n$ | $n$ |
| ExtractMin | $\log n$ | $n$ |
| ChangeKey | $\log n$ | $m$ |
| IsEmpty | 1 | $n$ |
| Total |  |  |

## Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain

$$
\pi(v)=\min _{e=(u, v): u \in S} d(u)+\ell_{e} .
$$

$>$ Next node to explore $=$ node with minimum $\pi(v)$.
$>$ When exploring v , for each incident edge $\mathrm{e}=(\mathrm{v}, \mathrm{w})$, update $\pi(w)=\min \left\{\pi(w), \pi(v)+\ell_{e}\right\}$.
Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by $\pi(v)$

|  | PQ Operation | RT of Op | \# in Dijkstra |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Insert | $\log n$ | n | $O(m \log n)$ |
|  | ExtractMin | $\log n$ | n |  |
|  | ChangeKey | $\log \mathrm{n}$ | m |  |
|  | IsEmpty | 1 | n |  |
|  | Total | CSCI211-Sprenkle |  |  |
| Feb 25, 2019 |  |  |  | 34 |

## Laying Cable

- Comcast wants to lay cable in a neighborhood
$>$ Reach all houses
$>$ Least cost



## Minimum Spanning Tree (MST)

Spanning tree: spans all nodes in graph

- Given a connected graph $G=(\mathrm{V}, \mathrm{E})$ with positive edge weights $\mathrm{c}_{\mathrm{e}}$, an MST is a subset of the edges $\mathrm{T} \subseteq \mathrm{E}$ such that T is a spanning tree whose sum of edge weights is minimized


$$
G=(V, E)
$$

## Looking ahead

- Wiki today: Chapter 4 (front matter), 4.1, 4.2, 4.4
- PS5 due Friday

