Objectives

- Wrap up: Weighted, directed graph shortest path
- Minimum Spanning Tree

Feb 25, 2019

CSCI211 - Sprenkle

Review

- What are greedy algorithms?
- What is our template for solving them?
- Review the last problem we were working on: Single-source, weighted-graph shortest path
 - What was our approach to solving the problem?

Feb 25, 2019

CSCI211 - Sprenkle

Review: Shortest Path Problem Given What was our strategy? Directed graph G = (V, E) > Source s, destination t \triangleright Length ℓ_e = length of edge e (non-negative) Shortest path problem: find shortest directed path from s to t cost of path = www.wlu.edu sum of edge costs in path Cost of path s-A-B-E-t = 9 + 23 + 2 + 16 = 48 www.cnn.com Feb 25, 2019 CSCI211 - Sprenkle

Dijkstra's Algorithm: Proof of Correctness

- Invariant. For each node $u \in S$, d(u) is the length of the shortest s-u path
- Pf. (by induction on |S|)
- Base case: |S|=1 ...
- Inductive hypothesis?
- Next step?

Feb 25, 2019

CSCI211 - Sprenkle

27

Dijkstra's Algorithm: Proof of Correctness

- Prove: For each node $u \in S$, d(u) is the length of the shortest s-u path
- Pf. (by induction on |S|)
- Base case: For |S| = 1, $S = \{s\}$; d(s) = 0
- Inductive hypothesis:
 Assume true for |S| = k, k ≥ 1
- Proof:
 - ➤ Grow |S| to k+1
 - \triangleright Greedy: Add node v by $u \rightarrow v$
 - \triangleright What do we know about $s \rightarrow u$?
 - Why didn't Greedy pick y as the next node?
 - \triangleright What can we say about all other $s \rightarrow v$ paths?

Feb 25, 2019

CSCI211 - Sprenkle

Dijkstra's Algorithm: Proof of Correctness

- Prove: For each node $u \in S$, d(u) is the length of the shortest s-u path
- Pf. (by induction on |S|)
- Inductive hypothesis: Assume true for $|S| = k, k \ge 1$
- Proof
 - ➤ Let v be the next node added to S by Greedy, and let u→v be the chosen edge
 - ➤ The shortest $s \rightarrow u$ path plus $u \rightarrow v$ is an $s \rightarrow v$ path of length $\pi(v)$
 - \triangleright Consider any $s \rightarrow v$ path P. It's no shorter than $\pi(v)$.
 - ➤ Let $x \rightarrow y$ be the first edge in P that leaves S, and let P' be the subpath to x.
 - P is already too long as soon as it leaves S.

Discussion: Dijstra's Algorithm

 Why does the algorithm break down if we allow negative weights/costs on edges?

Feb 25, 2019

CSCI211 - Sprenkle

Dijkstra's Algorithm: Analysis

- 1. Maintain a set of explored nodes S
 - Know the shortest path distance d(u) from s to u
- 2. Initialize $S=\{s\}$, d(s)=0, $\forall u\neq s$, $d(u)=\infty$
- 3. Repeatedly choose unexplored node v which $\min_{e = (u,v): u \in S} d(u) + \ell_e,$ minimizes
 - \triangleright Add v to S and set d(v) = π (v)

Feb 25, 2019

shortest path to some u in explored part, followed by a single edge (u, v)

Running time? Implementation? Data structures?

31

Dijkstra's Algorithm: Analysis

- 1. Maintain a set of explored nodes S
 - Keep the shortest path distance d(u) from s to u

CSCI211 - Sprenkle

- 2. Initialize S={s}, d(s)=0, $\forall u \neq s$, d(u)= ∞
- 3. Repeatedly choose unexplored node v which minimizes
 - \triangleright Add v to S and set d(v) = π (v)

PQ Operation RT of Op Insert ExtractMin ChangeKey IsEmpty Total

shortest path to some u in

explored part, followed by a single edge (u, v)

- · How long does each operation take?
- · How many of each operation?

Dijkstra's Algorithm: Implementation

- For each unexplored node, explicitly maintain $\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e.$
 - Next node to explore = node with minimum $\pi(v)$.
 - When exploring v, for each incident edge e = (v, w), update $\pi(w) = \min \{ \pi(w), \pi(v) + \ell_e \}.$
- Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by $\pi(v)$

PQ Operation	RT of Op	# in Dijkstra	
Insert	log n	n	
ExtractMin	log n	n	
ChangeKey	log n	m	
IsEmpty	1	n	
Total			
	CSCI211 - Sprenkle		

Feb 25, 2019

Feb 25, 2019

33

Dijkstra's Algorithm: Implementation

- For each unexplored node, explicitly maintain $\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e.$
 - Next node to explore = node with minimum $\pi(v)$.
 - When exploring v, for each incident edge e = (v, w), update $\pi(w) = \min \{ \pi(w), \pi(v) + \ell_e \}.$
- Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by $\pi(v)$

PQ Operation	RT of Op	# in Dijkstra	
Insert	log n	n	
ExtractMin	log n	n	
ChangeKey	log n	m	
IsEmpty	1	n	
Total		m log n	
	CSCI211 - Sprenkle		

O(m log n)

Minimum Spanning Tree (MST)

- Spanning tree: spans all nodes in graph
- Given a connected graph G = (V, E) with positive edge weights c_e, an *MST* is a subset of the edges T ⊆ E such that T is a *spanning tree* whose sum of edge weights is *minimized*

Looking ahead

- Wiki today: Chapter 4 (front matter), 4.1, 4.2, 4.4
- PS5 due Friday

Feb 25, 2019 CSCI211 - Sprenkle 37